Home青陈
青陈

青陈

@汗青

🤦🏻 关于我:ex京东用户中心负责人,也在ebay、阿里混迹过。

🍵《青陈》是关于「产品文化广义阅读」的专栏,涉及「商业、思维、设计、文化、审美」等话题,抵制一切成功学和「干货」

🐈 每周1-3篇原创文章或分享阅读。会员权益见「详细介绍」。
订阅0
文章67
最后更新:2023-7-10 0:7
查看 【青陈】 详情查看 【汗青】 主页
分享到微信打开

免费内容

2023-3-15 13:16

K.K最新专访 简译 Interview: Kevin Kelly, editor, author, and futurist

本期内容是 青陈 #027 技术向善吗 中KK专访部分的采访资料补充,方便没进入Notion的会员和读者阅读。Noah Smith和K.K的谈话信息量很大,涉及技术与人类的关系、AI、Web3等话题,而K.K无疑是相当具有发言权的人。以下为原文全文,翻译使用ChatGPT完成,配合部分的手工校验:Interview: Kevin Kelly, editor, author, and futuristKevin Kelly is one of the thinkers who helped define the ethos of the tech industry from its early days. As an editor of the Whole Earth Catalog in the 1980s and the founding editor of Wired magazine, he helped to integrate environmentalism and optimistic techno-futurism into a worldview that deeply influenced generations of founders, engineers, and creators. His work is so wide-ranging that it’s hard to sum it up in simple terms (I asked ChatGPT for help, but it could only give me vague generalities). His books and articles are a mix of technological prediction, interpretation 83 of the current zeitgeist, and philosophical exploration.Interestingly, his most recent book, Excellent Advice for Living: Wisdom I Wish I'd Known Earlier, is a book of life advice! His intellectual breadth and ability to synthesize various seemingly unrelated trends and ideas are something to 5 I can only aspire.Essentially, if you look at the fast-changing world of technology and you ask “Where is this all headed?”, and “Where should this all be headed?”, then Kevin Kelly is a natural person to ask. And in the interview that follows, that is basically what I asked him. I especially focused on his idea of the “technium”, which is all of human technology acting together as a single natural system or organism. We talk about whether this technium exists in competition with Earth’s natural environment, or whether the two can exist in harmony. We also discuss AI, social media crypto, and we talk about whether and how technological development can be actively steered. He also dispenses a bit of helpful life advice.Kevin Kelly是帮助定义了科技产业的伦理道德的思想家之一,从早期起就担任《全球地球目录》的编辑和《连线》杂志的创始编辑,他帮助将环保主义和乐观的技术未来主义融入了一个世界观中,深刻影响了创始人、工程师和创作者的几代人。他的工作范围非常广泛,很难用简单的术语来总结(我向ChatGPT寻求帮助,但它只能给我一些模糊的概括)。他的书籍和文章涵盖了技术预测、当前时代精神的解释和哲学探索等多种方面。有趣的是,他最近的书,《卓越人生建议:我希望早些知道的智慧》是一本人生建议的书!他的广泛智识和综合各种看似无关的趋势和思想的能力是我所仰慕的。实际上,如果你看看快速变化的技术世界,你会问“这一切将走向何方?”和“这一切应该走向何方?”那么询问Kevin Kelly是再合适不过了。在接下来的采访中,我特别关注了他的“技术体”,即将所有人类技术作为一个单一的自然系统或有机体来行动。我们讨论了这种技术体是否与地球的自然环境竞争,或者这两者是否可以和谐共存。我们还讨论了人工智能、社交媒体、加密货币,以及我们谈到了技术发展是否可以被积极引导。他还给出了一些有用的人生建议。N.S.: So first let's talk about your new book, Excellent Advice for Living. What made you decide to write a book of life advice?N.S.:首先让我们谈谈你的新书《优秀的生活建议》。是什么促使你决定写一本生活建议书?K.K.: It’s an inadvertent book. Writing a book of advice was never on my bucket list. But I like pithy quotes. When I want to change my own behavior, I need to repeat little behavior-modifying mantras as reminders. I have found that memorable proverbs give me a way to grab hold of lofty advice. So if I can distill a whole book’s worth of advice into a sentence, that gives me the handle for it, to easily bring the lesson forward when needed. With that in mind I started the habit of compressing a lot of useful information into a short memorable tip. Advice is best when directed at a specific person, so I decided to aim my advice at my adult son, who was in his early twenties. Once I started writing tiny bits of advice down for him, I discovered I had a lot to say — as long as I could telegraph it into a tweet. Most of my advice is ancient wisdom, evergreen notions that have been circulating since forever. But I try to put everything into my own words, as few as possible. Most of my writing time on the project was trying to remove words and reduce the advice even further until it is less than 140 characters.I like an old Irish custom where you give others a present on your birthday. So on my 68th birthday, I gifted 68 short bits of advice to my son, and while I was at it, I shared it with the rest of my extended family and without any expectations, posted it on my blog. The list ricocheted around the internet. So in the following year I started jotting down more adages aimed at my two grown daughters. As I was composing them I kept asking myself a couple of questions: is this advice practical and actionable? Can I stand behind it as true for me? Is this something I wished I had known earlier? If a bit passed these three filters, I’d add it to my list. On my next two birthdays I shared more insights I wished I had known earlier. I must have been getting better because these maxims reached escape velocity and were picked up by bloggers, newsletters and podcasters. They even made it onto the op-ed page of the New York Times.It’s handy to have blog posts to point to, but I wanted a really easy way to pass these lessons onto a young person or someone young at heart. Thus a small printed book of 450 bits of unsolicited advice that I wished I had known earlier, or Excellent Advice for Living. To be published by Viking/Penguin in May.K.K.:这是一本无心之作。写一本建议的书从未在我的愿望清单上。但我喜欢简洁的语录。当我想要改变自己的行为时,我需要重复一些行为修改的口头禅作为提醒。我发现,这些记忆深刻的谚语给了我一个抓住高尚建议的方式。因此,如果我能将整本书的建议浓缩成一个句子,那就给了我方便提醒这个教训的把柄。有了这个想法,我开始养成将大量有用的信息压缩成短小易记的提示的习惯。建议最好是针对特定的人,因此我决定将我的建议瞄准我的成年儿子,他当时二十出头。一旦我开始为他写下小小的建议,我发现我有很多话要说——只要我能将其简洁到一条推文的长度。我的大部分建议都是古老的智慧,常青的概念,自古以来一直在流传。但我尽量用我自己的话来表达一切,尽可能少的话语。我在这个项目上的大部分写作时间都是在努力删除多余的话语,将建议进一步减少,直到不到140个字符。我喜欢一个古老的爱尔兰习惯,在你的生日时给别人一份礼物。因此,在我68岁生日时,我送给了我儿子68个简短的建议,并将其分享给了我的其他亲戚,没有任何期望,并在我的博客上发布了它。这个列表在互联网上流传开来。因此,在接下来的一年里,我开始写下更多的箴言,瞄准我两个成年女儿。当我在创作时,我一直在问自己几个问题:这个建议实用吗?我可以支持它作为我的真实经历吗?这是我早些时候希望自己知道的东西吗?如果一个建议通过了这三个过滤器,我就会将它添加到我的列表中。在我接下来的两个生日里,我分享了更多我希望早些知道的洞见。我一定变得更好了,因为这些格言达到了逃逸速度,并被博客作者、新闻通讯和播客者接受。它们甚至出现在了纽约时报的专栏页面上。有博客文章可以指向,但我想要一种非常简单的方式将这些教训传递给年轻人或年轻心态的人。因此,我出版了一本小小的印刷书,其中包含450个我希望早些知道的未经请求的建议,或极好的生活建议。这本书将于5月由Viking/Penguin出版。N.S.: You've spent much of your life as a writer and editor. So your advice should be particularly relevant for me! What are one or two pieces of advice from the book that I should take to heart?您很大一部分时间都是作家和编辑。所以您的建议对我来说应该尤其相关!您在书中提供的一个或两个建议应该让我深刻领会。K.K.: Here are a few I learned the hard way:Most articles and stories are improved significantly if you delete the first page of the manuscript draft. Immediately start with the action.Separate the processes of creating from improving. You can’t write and edit, or sculpt and polish, or make and analyze at the same time. If you do, the editor stops the creator. While you write the first draft, don’t let the judgy editor get near. At the start, the creator mind must be unleashed from judgment.To write about something hard to explain, write a detailed letter to a friend about why it is so hard to explain, and then remove the initial “Dear Friend” part and you’ll have a great first draft.To be interesting just tell your story with uncommon honesty.K.K.:以下是我通过吃亏学到的几个教训:大多数文章和故事如果删除手稿草稿的第一页会显著提高质量。 立即从行动开始。将创作和改进的过程分开。 您无法同时编写和编辑、雕刻和抛光、制作和分析。 如果您这样做,会发现难以继续。 在您编写第一稿时,不要让评判性的编辑接近。在开始时,必须释放创作者的思维而不受判断。要写关于难以解释的事情,请给朋友写一封详细的信,说明为什么这很难解释,然后删除最初的“亲爱的朋友”部分,您就有了一个很好的第一稿。要有趣,只需以不寻常的诚实讲述您的故事。N.S.: Thanks! I will keep those in mind. You're somewhat of a role model for me, since you've managed to weave together surprisingly disparate interests -- technology, environmentalism, foreign cultures -- into a cohesive worldview, mainly through writing and editing, which is something I'd like to do as well. So anyway, let's talk a bit about that. One of your basic ideas is that technology itself makes up a natural system, which you call the technium. When did you first come up with this idea, and what made you think of it?谢谢!我会记住这些。你对我来说有点像榜样,因为你通过写作和编辑,将技术、环保、外国文化等看似不相关的兴趣融合成了一个有机的世界观。这正是我想做的事情。所以,让我们谈谈这个。你的基本观念之一是,技术本身构成了一个自然系统,你称之为技术体系。你是什么时候想出这个想法的?是什么让你想到它的?K.K.: First let me define what I mean by the technium. I call our human made system of all technologies working together, the technium. Each technology can not stand alone. It takes a saw to make a hammer and it takes a hammer to make a saw. And it takes both tools to make a computer, and in today’s factory it takes a computer to make saws and hammers. This co-dependency creates an ecosystem of highly interdependent technologies that support each other. The higher the technologies the more intertwined, complex, and codependent they become. At this point in our evolution we need farmers to support indoor plumbing and plumbing to support banks, and banks to enable farmers, and round and roundYou might call this network of technologies “culture” because it is the sum of everything that humans make. But the technium is more than just the sum of everything that is made. It differs from culture in that it is a persistent system with agency. Like all systems, the technium has biases and tendencies toward action, in a way that the term “culture” does not suggest. The one thing we know about all systems is that they have emergent properties and unexpected dynamics that are not present in their parts. So too, this system of technologies (the technium) has internal leanings, urges, behaviors, attractors that bend it in certain directions, in a way that a single screwdriver does not. These systematic tendencies are not extensions of human tendencies; rather they are independent of humans, and native to the technium as a whole. Like any system, if you cycle through it repeatedly, it will statistically favor certain inherent patterns that are embedded in the whole system. The question I keep asking is: what are the tendencies in the system of technologies as a whole? What does the technium favor?This idea kind of arrived from reading the critics of technology, such as Ted Kaczynski, the Unabomber, or Lewis Mumford, or Langdon Winner. They argued that our human-made artifacts create a deep web of interdependencies which give the technosphere its own agency, and I found their arguments convincing. They see the strength of this system as getting increasingly stronger, with great non-human agency, which I also agree with. But where I depart from the critics is that they are convinced that this network of technologies, this technium, is hostile to both nature and in particular antithetical to us humans, its creators. In fact, in their view, the technium is so antagonistic, and so powerful, yet beyond our control, that we need to dismantle it, or at least diminish it, or unplug it. In the eyes of the Unabomber and other anti-civilizationists, we need to destroy the technium before it destroys us.On the other hand, I see this technium as an extension of the same self-organizing system responsible for the evolution of life on this planet. The technium is evolution accelerated. A lot of the same dynamics that propel evolution are also at work in the technium. At its core the technium is an ecosystem of inventions capable of evolving entirely new forms of being that wet biology alone can not reach. Our technologies are ultimately not contrary to life, but are in fact an extension of life, enabling it to develop yet more options and possibilities at a faster rate. Increasing options and possibilities is also known as progress, so in the end, what the technium brings us humans is progress.K.K.:首先,让我定义一下我所说的技术体系。我把我们人类制造的所有技术共同运作的系统称为技术体系。每一种技术都不能单独存在。制作锤子需要用到锯,制作锯也需要用到锤子。而制作计算机需要用到这两种工具,在今天的工厂中,制作锯和锤子需要计算机的支持。这种相互依存创造了高度相互依赖的技术生态系统,它们相互支持。技术越高级,它们就越相互交织、复杂和相互依存。在我们的进化过程中,我们需要农民支持室内管道,需要管道支持银行,需要银行支持农民,周而复始。你可能会称这个技术网络为“文化”,因为它是人类所创造的一切的总和。但技术体系不仅仅是所有制造物的总和。它与文化的不同之处在于,它是一个具有代理能力的持久系统。像所有系统一样,技术体系具有偏见和行动倾向,这是“文化”一词所不暗示的。我们知道所有系统共同点就是它们有着不在其部分中存在的新兴特性和意想不到的动态。技术体系也有自己的内在倾向、冲动、行为和吸引力,这些因素会使它朝某个方向发展,而单独一把螺丝刀则没有这种倾向。这些系统性倾向不是人类倾向的延伸;相反,它们是独立于人类的,是整个技术体系所固有的。像任何系统一样,如果你反复经过它,它会统计上偏向于嵌入整个系统中的某些固有模式。我一直在问的问题是:技术体系作为一个整体的倾向是什么?技术体系青睐什么?这个想法是从阅读技术批评家如Ted Kaczynski、Unabomber、Lewis Mumford或Langdon Winner的文章中得出的。他们认为,我们人造的工艺品创建了一种深层次的相互依赖网络,赋予了技术领域自己的代理能力,我认同他们的观点。他们认为,这个系统的强度越来越强,拥有伟大的非人类代理能力,我也同意这一点。但我与批评家的分歧在于,他们相信这个技术网络、这个技术体系对自然界不友好,特别是对我们人类这个创造者来说是对立的。事实上,在他们看来,技术体系是如此敌对、如此强大,而我们无法控制它,以至于我们需要拆除它,或者至少减少它的使用量,或者拔掉它的插头。在反文明主义者如Unabomber看来,我们需要在技术体系毁灭我们之前摧毁它。另一方面,我认为这个技术体系是同一个自组织系统的延伸,这个系统负责地球上的生命演化。技术体系是演化的加速器。推动演化的许多相同动力也在技术体系中起作用。在其核心,技术体系是一种发明的生态系统,能够演化出完全超越湿生物的新形式。我们的技术最终不是与生命对立的,而是生命的延伸,使其以更快的速度开发出更多的选择和可能性。增加选择和可能性也被称为进步,所以最终,技术体系给我们人类带来的是进步。N.S.: You talk about the emergent properties of the technium. What are some of these emergent properties? Are we capable of confirming their existence with data and writing down simple, explicable rules that predict the evolution and/or the behavior of the technium itself?N.S .:你谈到技术体系的新兴属性。这些新兴属性有哪些?我们能够通过数据确认它们的存在并编写简单易懂的规则来预测技术体系自身的演变和/或行为吗?K.K.: One unexpected emergent property of the technium is that most inventions and innovations are co-invented multiple times, simultaneously and independently. That is, more than one person will honestly invent the next new thing about the same time. This means that the popular image of the lone mad inventor or heroic scientist is just wrong. For instance 23 other inventors created electric incandescent light bulbs prior to Thomas Edison. Edison is renowned primarily because he was the first to figure out the business model of electric lighting. Simultaneous independent invention is the norm, true for minor as well as major leaps like calculus, steam engines and the transistor. Because each and every technology is not a single standalone idea but a web of many ideas, the technium itself emerges as a significant partner in invention. Libraries, journals, communication networks, and the accumulation of other technologies help create the next idea, beyond the efforts of a single individual. If Alexander Graham Bell had not secured the patent for inventing the telephone, Elisha Gray would have gotten it because they both applied for the telephone patent on the same day (Feb 14, 1876). There is plenty of data and confirmation about this emergent phenomenon, and we can predict with pretty good accuracy that lone inventors will become increasingly rare, and that invention and innovation will increasingly operate at a higher institutional level.To be even more precise, quantitative, and rule-ish, we’d need to have more than a single example of the technium. Right now we have only one technium and so we have an N=1 study, which yields meager reliable rules. But in pre-history, when there was scarce communication between the Americas, Europe, Asia, Africa, and Australia, we had a N=5 case. The sequence of inventions on each continent were highly correlated locally, with the order of 60 ancient technologies such as pottery, weaving, and dog domestication appearing in a similar pattern on each separate continent. We also see near-identical parallel inventions of tricky contraptions like slingshots and blowguns. However, because it was so ancient, we don’t have a lot of data for this behavior. What we would really like is to have a N=100 study of hundreds of other technological civilizations in our galaxy. From that analysis we’d be able to measure, outline, and predict the development of technologies. That is a key reason to seek extraterrestrial life.I think if we did have a robust set of techniums to inspect we’d find emergent phenomena like the rampant replication we see on this planet. At the core of the origin of life, and its ongoing billion-year metabolism, is its ability to replicate and copy information accurately. Life copies itself to live, copies to grow, copies to evolve. Life wants to copy. We could say the same about the technium, particularly the informational technium we are currently swimming in. Anything digital that can be copied, will be copied. To perform any kind of communication, information will be replicated perfectly, again and again. To send a message from one part of the globe to another requires innumerable copies along the route to be made. When information is processed in a computer, it is being ceaselessly replicated and re-copied while it computes. Information wants to be copied. Therefore, when certain people get upset about the ubiquitous copying happening in the technium, their misguided impulse is to stop the copies. They want to stamp out rampant copying in the name of "copy protection,” whether it be music, science journals, or art for AI training. But the emergent behavior of the technium is to copy promiscuously. To ban, outlaw, or impede the superconductivity of copies is to work against the grain of the system. It is a losing game. It’s like trying to work against the propensity of life to replicate. The “rule” then, is to flow with the copies. The prediction would be that innovations, agents, companies, and laws that embrace the easy flow of copies will prevail, while the innovations, agents, companies, and laws that try to thwart liberated ubiquitous copies will ultimately not prevail. This is not the quantitative, precise kind of prediction we’d like to have, but this kind of general emergent trend is the best we’ll do with a sample size of N1.K.K.:技术体系的一个意外的新兴特性是,大多数发明和创新都是同时和独立地被多个人共同发明的。也就是说,很多人会在差不多同一时间里诚实地发明下一个新事物。这意味着,孤独的疯狂发明家或英雄科学家的普遍形象是错误的。例如,托马斯·爱迪生之前有23位发明家创造了电灯泡。爱迪生之所以著名,主要是因为他第一个想出了电灯的商业模式。同时独立发明是一种常态,这对于微小的跨度和重大的跨度都是真实的,比如微积分、蒸汽机和晶体管。因为每一个技术不是单独的想法,而是许多想法的网络,所以技术体系本身就成为了发明的重要伙伴。图书馆、期刊、通信网络和其他技术的积累帮助创造下一个想法,超越了单个个体的努力。如果亚历山大·格雷厄姆·贝尔没有获得发明电话的专利,伊莉莎·格雷就会获得这个专利,因为他们都在同一天申请了电话专利(1876年2月14日)。有大量的数据和证实这种新兴现象,我们可以预测孤独的发明家将越来越少,发明和创新将越来越在更高的机构层面上运作。为了更精确、定量和规则化,我们需要不止一个技术体系的例子。现在我们只有一个技术体系,所以我们只有一个N=1的研究,能够获得可靠的规则是有限的。但在史前时期,当美洲、欧洲、亚洲、非洲和澳大利亚之间的通信很少时,我们有一个N=5的案例。每个大陆上的发明顺序在本地高度相关,60种古老技术(如陶器、纺织和驯养狗)的顺序在每个分离的大陆上都呈现出类似的模式。我们还看到了几乎完全相同的平行发明,如弹弓和吹箭。然而,因为它是如此古老,我们没有太多的数据来证明这种行为。我们真正想要的是在我们的银河系中有数百个其他技术文明的N=100的研究。从那个分析中,我们将能够测量、概述和预测技术的发展。这是寻找地外生命的一个关键原因。我认为,如果我们确实有一个强大的技术体系集合来检验,我们会发现像我们在这个星球上看到的大量复制一样的新兴现象。在生命起源和其持续的亿万年代谢的核心是其准确地复制和复制信息的能力。生命的复制是为了生存,复制是为了成长,复制是为了进化。生命想要复制。我们也可以这样说技术体系,特别是我们目前正在游泳的信息技术体系。任何可以复制的数字都将被复制。为了进行任何形式的通信,信息将被完美地复制,一遍又一遍。要将消息从地球的一部分发送到另一部分,需要制作无数的副本。当信息在计算机中处理时,它正在不断地被复制和再复制,同时计算。信息想要被复制。因此,当某些人对技术体系中的普遍复制感到不满时,他们错误的冲动是停止复制。他们想在“版权保护”的名义下铲除猖獗的复制,无论是音乐、科学杂志还是AI培训的艺术品。但技术体系的新兴行为是不受约束地复制。禁止、取缔或阻碍副本的超导性是逆着系统的潮流而行的。这是一个失败的游戏。这就像试图抵抗生命复制的倾向一样。因此,“规则”是要随着副本的流动。预测是,拥抱易于流动的副本的创新、代理、公司和法律将占优势,而试图阻止解放的无处不在的副本的创新、代理、公司和法律最终将不占优势。这不是我们想要的定量、精确的预测,但这种一般的新兴趋势是我们在N1的样本量下所能做到的最好的。N.S.: So let's talk about some of the current and near-future effects of the technium on our world. There's currently a big debate about how technology interfaces with the environment. On one side we have degrowthers, who think the environment -- including the climate, but also natural habitats -- can only be preserved by curbing economic growth, and thus see the impact of human technology on the natural world as fundamentally extractive. On the other side are the technologists, who hold that only technological innovation gives us a realistic chance of reducing our environmental footprint and averting truly disastrous climate change. What's your perspective on this debate?那么让我们来谈一谈技术对我们世界的当前和近期影响。目前有关技术与环境的接口存在着一场激烈的辩论。一方面,我们有“缩退主义者”,他们认为环境(包括气候,但也包括自然栖息地)只有通过遏制经济增长才能得到保护,因此将人类技术对自然界的影响视为根本性的提取。另一方面则是技术专家,他们认为只有技术创新才能给我们减少环境足迹并避免真正灾难性气候变化的现实机会。您对这场辩论有什么看法?K.K.: There is no question I favor the latter perspective: that while technology has gotten us into this mess (climate change) only technology can get us out of it. Only the technium (our technological system) is “big” enough to work at the global scale needed to fix this planetary sized problem. Individual personal virtue (bicycling, using recycling bins) is not enough. However the worry of some environmentalists is that technology can only contribute more to the problem and none to the solution. They believe that tech is incapable of being green because it is the source of relentless consumerism at the expense of diminishing nature, and that our technological civilization requires endless growth to keep the system going. I disagree.In English there is a curious and unhelpful conflation of the two meanings of the word “growth.” The most immediate meaning is to increase in size, or increase in girth, to gain in weight, to add numbers, to get bigger. In short, growth means “more.” More dollars, more people, more land, more stuff. More is fundamentally what biological, economic, and technological systems want to do: dandelions and parking lots tend to fill all available empty places. If that is all they did, we’d be well to worry. But there is another equally valid and common use of the word “growth" to mean develop, as in to mature, to ripen, to evolve. We talk about growing up, or our own personal growth. This kind of growth is not about added pounds, but about betterment. It is what we might call evolutionary or developmental, or type 2 growth. It’s about using the same ingredients in better ways. Over time evolution arranges the same number of atoms in more complex patterns to yield more complex organisms, for instance producing an agile lemur the same size and weight as a jelly fish. We seek the same shift in the technium. Standard economic growth aims to get consumers to drink more wine. Type 2 growth aims to get them to not drink more wine, but better wine.The technium, like nature, excels at both meanings of growth. It can produce more, rapidly, and it can produce better, slowly. Individually, corporately and socially, we’ve tended to favor functions that produce more. For instance, to measure (and thus increase) productivity we count up the number of refrigerators manufactured and sold each year. More is generally better. But this counting tends to overlook the fact that refrigerators have gotten better over time. In addition to making cold, they now dispense ice cubes, or self-defrost, and use less energy. And they may cost less in real dollars. This betterment is truly real value, but is not accounted for in the “more” column. Indeed a tremendous amount of the betterment in our lives that is brought about by new technology is difficult to measure, even though it feels evident. This “betterment surplus” is often slow moving, wrapped up with new problems, and usually appears in intangibles, such as increased options, safety, choices, new categories, and self actualization — which like most intangibles, are very hard to pin down. The benefits only become more obvious when we look back in retrospect to realize what we have gained. Part of our growth as a civilization is moving from a system that favors more barrels of wine, to one that favors the same barrels of better wine.A major characteristic of sapiens has been our compulsion to invent things, which we have been doing for tens of thousands of years. But for most of history our betterment levels were flatlined, without much evidence of type 2 growth. That changed about 300 years ago when we invented our greatest invention -- the scientific method. Once we had hold of this meta-invention we accelerated evolution. We turned up our growth rate in every dimension, inventing more tools, more food, more surplus, more population, more minds, more ideas, more inventions, in a virtuous spiral. Betterment began to climb. For several hundred years, and especially for the last hundred years, we experience steady betterment. But that betterment — the type 2 growth — has coincided with massive expansion of “moreness.” We’ve exploded our human population by an order of magnitude, we’ve doubled our living space per person, we have rooms full of stuff our ancestors did not. Our betterment, that is our living standards, have increased alongside the expansion of the technium and our economy, and most importantly the expansion of our population. There is obviously some part of a feedback loop where increased living standards enables yearly population increases and more people create the technology for higher living standards, but causation is hard to parse. What we can say for sure is that as a species we don’t have much experience, if any, with increasing living standards and fewer people every year. We’ve only experience increased living standards alongside of increased population.By their nature demographic changes unroll slowly because they run on generational time. Inspecting the demographic momentum today it is very clear human populations are headed for a reversal on the global scale by the next generation. After a peak population around 2070, the total human population on this planet will start to diminish each year. So far, nothing we have tried has reversed this decline locally. Individual countries can mask this global decline by stealing residents from each other via immigration, but the global total matters for our global economy. This means that it is imperative that we figure out how to shift more of our type 1 growth to type 2 growth, because we won’t be able to keep expanding the usual “more.” We will have to perfect a system that can keep improving and getting better with fewer customers each year, smaller markets and audiences, and fewer workers. That is a huge shift from the past few centuries where every year there has been more of everything.In this respect “degrowthers” are correct in that there are limits to bulk growth — and running out of humans may be one of them. But they don’t seem to understand that evolutionary growth, which includes the expansion of intangibles such as freedom, wisdom, and complexity, doesn’t have similar limits. We can always figure out a way to improve things, even without using more stuff — especially without using more stuff! There is no limit to betterment. We can keep growing (type 2) indefinitely.The related concern about the adverse impact of the technology on nature is understandable, but I believe, can also be solved. The first phases of agriculture and industrialization did indeed steamroll forests and wreck ecosystems. Industry often required colossal structures of high-temperature, high pressure operations that did not operate at human or biological scale. The work was done behind foot-thick safety walls and chain link fences. But we have "grown.” We’ve learned the importance of the irreplaceable subsidy nature provides our civilizations and we have begun to invent more suitable technologies. Industrial-strength nuclear fission power will eventually give way to less toxic nuclear fusion power. The work of this digital age is more accommodating to biological conditions. As kind of a symbolic example, the raw ingredients for our most valuable products, like chips, require ultra cleanliness, and copious volumes of air and water cleaner than we’d ever need ourselves. The tech is becoming more aligned with our biological scale. In a real sense, much of the commercial work done today is not done by machines that could kill us, but by machines we carry right next to our skin in our pockets. We continue to create new technologies that are more aligned with our biosphere. We know how to make things with less materials. We know how to run things with less energy. We’ve invented energy sources that reduce warming. So far we’ve not invented any technology that we could not successfully make more green.We have a ways to go before we implement these at scale, economically, with consensus. And it is not inevitable at all that we will grab the political will to make these choices. But it is important to realize that the technium is not inherently contrary to nature; it is inherently derived from evolution and thus inherently capable of being compatible with nature. We can choose to create versions of the technium that are aligned with the natural world. Or not. As a radical optimist, I work towards a civilization full of life-affirming high technology, because I think this is possible, and by imagining "what could be" gives us a much greater chance of making it real.K.K .:毫无疑问,我更喜欢后一种观点:虽然技术让我们陷入了这个问题(气候变化),但只有技术才能让我们走出这个问题。只有技术体系(我们的技术系统)才足够“大”,能够在全球范围内解决这个规模庞大的问题。个人的道德美德(骑自行车,使用回收垃圾箱)是不够的。然而,一些环保主义者担心技术只能为问题增添贡献,却无法解决问题。他们认为,技术无法实现绿色环保,因为它是无情消费主义的源头,以牺牲自然为代价,我们的技术文明需要无限增长才能保持系统运转。我不同意。英语中有一个奇怪而且不太有用的词义混淆:“增长”这个词有两层含义。最直接的含义是增加体积、增加重量、增加数量、变得更大。简而言之,增长意味着“更多”。更多的钱、更多的人、更多的土地、更多的东西。生物、经济和技术系统想要做的基本上都是“更多”:蒲公英和停车场往往会填满所有可用的空地。如果只是这样,我们就有理由担心。但是,“增长”这个词还有另一个同样有效和常见的含义:发展,即成熟、成熟、进化。我们谈论生长、谈论我们自己的个人成长。这种增长不是指增加体重,而是指改善。这是我们所说的进化或发展,或称为第二型增长。它是关于更好地使用相同的原料。随着时间的推移,进化将相同数量的原子排列成更复杂的模式,以产生更复杂的生物体,例如产生一个敏捷的狐猴和一只相同大小和重量的水母。我们寻求在技术体系中实现相同的转变。标准的经济增长旨在让消费者喝更多的葡萄酒。第二型增长的目标是让他们不喝更多的葡萄酒,而是喝更好的葡萄酒。技术体系就像自然一样,擅长于两种增长方式。它可以快速地生产更多的东西,也可以慢慢地生产更好的东西。在个体、公司和社会方面,我们倾向于支持能够生产更多的功能。例如,为了衡量(从而增加)生产力,我们每年统计制造和销售的冰箱数量。越多越好。但是这种计算往往忽略了冰箱随着时间的推移变得更好的事实。除了制冷,它们现在还可以提供冰块或自动除霜,并且使用的能源更少。而且它们可能在实际美元中的成本更低。这种改善是真正的价值,但没有计入“更多”列中。事实上,新技术带来的我们生活中的改善的巨大部分很难衡量,即使它们看起来很明显。这种“改善剩余”通常是缓慢的,与新问题密切相关,并且通常出现在无形中,例如增加的选择、安全、选择、新类别和自我实现——这些与大多数无形资产一样,都很难确定。只有在回顾过去时,我们才会意识到我们所获得的好处更加明显。作为我们文明的一部分,我们正在从一个偏爱更多酒桶的系统转向一个偏爱相同酒桶更好的系统。Sapiens的一个主要特征是我们发明事物的冲动,这是我们已经做了几万年的事情。但是在大部分历史中,我们的改善水平一直停滞不前,没有太多第二型增长的证据。大约300年前,当我们发明了我们最伟大的发明——科学方法时,情况发生了改变。一旦我们掌握了这种元发明,我们就加快了进化的速度。我们在每个维度上提高了增长率,在良性循环中发明了更多的工具、更多的食物、更多的盈余、更多的人口、更多的思想、更多的发明。改善开始上升。几百年来,尤其是在过去一百年中,我们经历了稳定的改善。但是这种改善——即第二型增长——与“更多”的大规模扩张同时发生。我们把人类的人口数量增加了一个数量级,我们将每个人的生活空间翻了一番,我们拥有的东西比我们的祖先多。我们的改善,即我们的生活水平,随着技术体系和经济的扩张,特别是人口的扩张而提高。显然,有一部分反馈循环,即提高生活水平使每年的人口增加,并且更多的人创造了提高生活水平的技术,但是因果关系很难解释。我们可以毫不怀疑地说,作为一个物种,我们没有太多的经验,如果有的话,就是每年生活水平提高,人口却更少。我们只有在人口增加的同时提高生活水平的经验。由于它们在代际时间上运行,因此人口统计变化会缓慢展开。检查当今的人口动力学,很明显,人类人口正在全球范围内迎来逆转。在约2070年达到人口峰值后,这个星球上的总人口将开始逐年减少。到目前为止,我们尝试的所有方法在本地都没有扭转这一趋势。个别国家可以通过移民从彼此那里偷走居民来掩盖这种全球性的下降,但对于我们的全球经济而言,全球总量很重要。这意味着我们必须想办法将更多的第一型增长转化为第二型增长,因为我们将无法继续扩张通常的“更多”。我们将不得不完善一个系统,使其能够随着每年的客户、更小的市场和观众以及更少的工人而不断改进和变得更好。这是过去几个世纪以来的一个巨大转变,因为每年都有更多的一切。在这方面,“退化论者”是正确的,因为大规模增长存在限制——人类的消失可能是其中之一。但是他们似乎不理解,包括自由、智慧和复杂性扩展在内的进化增长并没有类似的限制。即使不使用更多的东西,我们总是可以想出改进事物的方法——尤其是不使用更多的东西!改善没有限制。我们可以无限期地保持增长(第二型)。与技术对自然的不利影响有关的担忧是可以理解的,但我认为也可以解决。农业和工业化的第一阶段确实压垮了森林并破坏了生态系统。工业往往需要高温、高压操作的巨大结构,这些操作不是在人类或生物尺度上运作的。工作是在安全墙和链网栏杆后完成的。但是我们已经 “长大了”。我们已经意识到自然对我们文明提供的不可替代的补贴的重要性,并开始发明更适合的技术。工业级核裂变动力将最终让位于更少有毒的核聚变动力。数字时代的工作更符合生物条件。作为一种象征性的例子,我们最有价值的产品的原材料需要超级清洁,并且需要比我们自己需要的更多的空气和水。技术正在与我们的生物尺度越来越相符。在实际意义上,今天完成的大部分商业工作都不是由可能杀死我们的机器完成的,而是由我们随身携带的机器完成的。我们继续创造与我们的生物圈相一致的新技术。我们知道如何使用更少的材料制造物品。我们知道如何使用更少的能量来运行事物。我们发明了减少变暖的能源来源。到目前为止,我们还没有发明任何一种技术,我们无法成功地使其更加环保。在实现这些技术的规模化、经济化和共识方面,我们还有很长的路要走。我们也不可能不避免地获得政治意愿来做出这些选择。但是重要的是要意识到,技术体系本质上并不与自然相悖;它本质上来源于进化,因此本质上能够与自然兼容。我们可以选择创建与自然世界相一致的技术。或不。作为一个激进的乐观主义者,我致力于创造充满生命力的高技术文明,因为我认为这是可能的,并且通过想象“可能性”,我们实现它的机会更大。N.S.: I really like that vision a lot. You and I are quite closely aligned on our basic techno-optimism, our view of growth, and our concept of the relationship between human civilization and nature. But I'd like to try to challenge this optimism a little bit. Since around 2010, there have been increasing concerns about the direction the technium has taken us -- toward smartphones that absorb all our attention and take us out of the world and foster loneliness, toward social networks that sow sociopolitical discord and create feelings of personal inadequacy. Do you think innovation took something of a wrong turn in the 2010s, or are these problems overstated?我非常喜欢这个愿景。你和我在基本技术乐观主义、增长观和人类文明与自然关系的概念上非常接近。但我想试着挑战一下这种乐观主义。自2010年左右以来,人们对技术的发展方向越来越担忧——智能手机吸引了我们所有的注意力,让我们远离世界,培养了孤独感;社交网络播下了社会政治上的不和谐,让人感到个人的不足。您认为创新在2010年代走了弯路,还是这些问题被夸大了?K.K.: These problems are overstated. The thing to remember when evaluating new technologies is we have to always ask “compared to what?.” Mercury-based dental fillings statistically caused some harm, but compared to what? Compared to cavities, they were a miracle. We tend to give existing technologies a pass from the degree of scrutiny we give new technologies. Social media can transmit false information at great range at great speed. But compared to what? Social media's influence on elections from transmitting false information was far less than the influence of the existing medias of cable news and talk radio, where false information was rampant. Did anyone seriously suggest we should regulate what cable news hosts or call in radio listeners could say? Bullying middle schoolers on social media? Compared to what? Does it even register when compared to the bullying done in school hallways? Radicalization on YouTube? Compared to talk radio? To googling?The complexity of social media is akin to biology. It is not a coincidence that we speak of things going viral. Figuring out what is going on with these new platforms, what is harmful, what is beneficial, is as challenging as determining what is best for our health. Human bodies have so many interacting variables, all difficult to isolate, that we can’t rely on a single or even a few studies to determine our best health practices. Initial, honest, well-crafted medical studies are often proven wrong, sometimes embarrassingly wrong, many studies later. In fact it may take hundreds of studies before we can say a result is “true." Social media is equally complex, with even more variables, and it is still an infant. We are trying to evaluate a baby that is roughly 250 months old, and hoping to predict what it will be good for when it grows up.A further complication is that we are judging a class of technologies based on what kids do with them. Kids are inherently obsessive about new things, and can become deeply infatuated with stuff that they outgrow and abandon a few years later. So the fact they may be infatuated with social media right now should not in itself be alarming. Yes, we should indeed understand how it affects children and how to enhance its benefits, but it is dangerous to construct national policies for a technology based on the behavior of children using it.Similarly, we should be wary of evaluating a technology within only one culture. So far, we are extremely biased because we have examined social media primarily in the US. There is little research on the effects — plus or minus — on users in other cultures. Since it is the same technology, inspecting how it is used in other parts of the world would help us isolate what is being caused by the technology and what is being caused by the peculiar culture of the US.There are surely new problems generated by social media. We can not use something for hours a day, every day, and have it not affect us. We have hints, but don’t really know. As we discover how it works, a wise society would modulate how this technology is used — by adults and children. As we begin to understand its tendencies, harms and benefits, we can devise incentives to continually re-design the tech to enhance democracy and well-being. All this must be done on the fly, in real time, because what we have learned over the past 100 years is that we can’t figure out, and can’t predict, what technologies will be good for simply by thinking and talking about them. New technologies are so complex they have to be used on the street in order to reveal their actual character. We are likely to guess wrong at first, as we have been wrong in the past when trying to guess what a new technology meant. We can laugh now at the moral panics over the degrading nature of novels, cinema, sports, music, dancing, TV, and comic books (the latter two prohibited in our house when I was growing up), but we know prohibitions never work in the long term. We should engage with social media, because we can only steer technologies while we engage them. Without engagement we don’t get to steer.这些问题被夸大了。在评估新技术时,我们必须时刻问“与什么相比?”虽然基于汞的牙科填充材料在统计上造成了一些伤害,但与什么相比呢?与龋齿相比,它们是一种奇迹。我们倾向于对现有技术给予相对宽松的审查,而对新技术给予更高的审查度。社交媒体可以以很高的速度传播虚假信息。但与什么相比呢?社交媒体传播虚假信息对选举的影响远远不如有线电视新闻和脱口秀电台。在那里,虚假信息猖獗。有人曾认真建议我们对有线电视新闻主持人或打电话给电台节目的听众说什么进行管制吗?社交媒体上欺负中学生?与什么相比呢?与在学校走廊里进行的欺负相比,它甚至没有什么影响?YouTube上的激进化?与电台呢?与谷歌搜索呢?社交媒体的复杂性类似于生物学。我们讲某些东西会“病毒式传播”,这不是巧合。了解这些新平台发生了什么、什么是有害的、什么是有益的,就像确定我们的健康最佳实践一样具有挑战性。人体有太多相互作用的变量,所有这些变量都难以隔离,我们不能依靠单个或甚至少量的研究来确定我们的最佳健康实践。最初、诚实、精心制作的医学研究往往被证明是错误的,有时候尴尬地错误,许多研究后才被证明是“正确”的。事实上,可能需要进行数百 项研究才能说一个结果是“正确”的。社交媒体同样复杂,有更多的变量,而且它还是一个婴儿。我们正试图评估一个大约有250个月大的婴儿,希望能预测它长大后会有什么用处。更进一步的是,我们是根据孩子的使用来评估一类技术的。孩子们在新事物上天生就是痴迷的,他们可能会对他们长大后会放弃的东西深深地着迷。因此,他们现在对社交媒体着迷,本身并不是令人担忧的。是的,我们确实应该了解它如何影响儿童以及如何增强它的好处,但是基于儿童使用它的行为来构建技术的国家政策是危险的。同样地,我们应该警惕仅在一个文化中评估技术。到目前为止,我们非常偏向于在美国主要研究社交媒体。在其他文化中使用它的用户的影响 - 正面或负面 - 很少有研究。由于它是同样的技术,检查它在世界其他地方的使用方式将有助于我们隔离技术所引起的是什么,以及美国独特文化所引起的是什么。当然,社交媒体肯定会产生新问题。我们不能每天使用几小时,每天使用它而不受影响。我们有一些暗示,但并不真正知道。随着我们发现它的工作方式,明智的社会将调节成人和儿童使用这种技术的方式。随着我们开始理解它的倾向、危害和好处,我们可以制定激励措施,不断重新设计技术,以增强民主和福祉。所有这些都必须在现实时间内实时完成,因为我们在过去的100年里学到的是,我们不能仅仅通过思考和谈论来确定什么技术是好的,也不能预测它们的作用。新技术非常复杂,必须在街头使用才能揭示它们的实际特征。我们很可能一开始猜错,就像过去猜错新技术的意义一样。我们现在可以嘲笑小说、电影、体育、音乐、舞蹈、电视和漫画书的道德恐慌(后两者在我成长的时候被禁止),但我们知道禁令从长远来看永远不会生效。我们应该与社交媒体互动,因为只有在我们参与其中时,我们才能引导技术的发展。N.S.: When you say "only we can steer technologies", who does the "steering"? Should government be regulating new technologies more heavily, and if so, how? It seems hard for users themselves -- ourselves! -- to steer these technologies. I've been a heavy Twitter user for years, but I've never managed to do much about its tendency toward misinformation and performative, attention-seeking aggression. No one else has either. How can we steer big platforms?当您说“只有我们可以引领技术”时,谁来“引领”?政府是否应更严格地监管新技术,如果是,该如何实施?似乎很难让用户自己引领这些技术。我多年来一直是Twitter的重度用户,但我从未能够有效地解决其虚假信息和表现性、追求关注的攻击倾向。其他人也没有。我们如何引导大型平台?K.K.: There are 3 levels of steerage. Level 1, individually we (you) ARE steering Twitter when you decide to mute or not to mute, or ban or not ban. You are voting what you think is important by using it. Or some people vote by not using it. You don’t notice what difference you make because of the platform's humongous billions-scale. In aggregate your choices make a difference which direction it — or any technology — goes. People prefer to watch things on demand, so little by little, we have steered the technology to let us binge watch. Streaming happened without much regulation or even enthusiasm of the media companies. Street usage is the fastest and most direct way to steer tech.Level 2, is regulation by governments. This can work, and is often necessary to steer. The challenge is premature regulation. The panic cycle for tech begins on the first bit of news about possible harms to anyone, and first response is a call to regulate. But as we just discussed, because it’s a newborn, it is easy — if not certain — that our first impressions about the tech are wrong, and thus early regulations often tend to brake more than steer. We have some good case examples of regulating tech in the right direction. We steered DDT away from being used as a plantation-scale pesticide (poisoning entire wildlife ecosystems), and redirected to be used judiciously, carefully, in small amounts in villages to eliminate mosquito borne malaria, saving the lives of many millions with minimum effect on ecosystems. That took years to accomplish, but the evidence was vivid. We should require more than precautionary type of evidence in order to use regulation to steer.The third level of steerage is through innovation and entrepreneurship. When new problems are seen, new solutions are invented. Sometimes engineers in the host companies offer technical remedies, or shift directions. Often times solutions come from startups outside. Occasionally new directions are developed by the customers themselves. Vibrators instead of the cacophony of ringing bells on cell phones is one example of a marketplace technological solution. The marketplace needs regulation to keep it level, clean, optimal, and fertile for innovations to flourish. This is probably the more important role for regulation in steering.It’s a messy process. And as messy as it has been to steer social media, it will be even messier to steer AIs and genetic engines, principally because they are so close to our identity as human and because we are so ignorant of what humans are good for. Consensus of a preferred direction will be very slow in coming. And slow should be mandatory regulation.KK:有三个层次的操纵。第一层,当你决定是否静音或封禁时,你个人就在操纵 Twitter。你使用它来表达你认为重要的问题,或者有些人通过不使用它来表达意见。由于这个平台庞大的规模,你不会注意到你所做出的差异。但是,总体上你们的选择将决定它或任何技术的方向。人们喜欢随需而变地观看事物,所以我们逐渐将技术引向了让我们能够连续观看的方向。流媒体的发展没有受到太多规制,甚至没有得到媒体公司的热情支持。街头使用是引领科技的最快、最直接的方式。第二层是政府的规制。这可能是有效的引导方式,通常也是必要的。挑战在于过早的规制。科技恐慌循环始于第一条关于可能对任何人造成伤害的新闻,而第一反应就是呼吁加强规制。但正如我们刚刚讨论的,由于它是新生事物,我们对科技的第一印象往往是错误的,因此早期规制往往会制约新技术而不是将它向好的方向引导。我们有一些很好的案例可以证明,正确的技术规制可以使科技的发展方向得到引领。我们把 DDT 从一种种植规模的杀虫剂转变为谨慎、小心地在村庄中使用的少量药剂,以消灭蚊媒疟疾,拯救了数百万人的生命,并对生态系统的影响最小。这需要数年时间才能完成,但证据是明显的。我们应该要求更多的证据来使用规制来引导。第三层是通过创新和企业家精神来引领。当出现新问题时,就会有新解决方案被发明出来。有时,主机公司的工程师提供技术解决方案或改变方向。通常,解决方案来自于外部的初创企业。偶尔,顾客自己也能开发出新的方向。在手机上使用振动器而不是喧闹的铃声就是一个市场技术解决方案的例子。市场需要规制来保持平衡、清洁、最佳和有利于创新的发展。这可能是规制在引导方面的更重要的作用。这是一个混乱的过程。虽然引领社交媒体的过程很混乱,但是引领人工智能和基因引擎将会更加混乱,主要因为它们与我们作为人类的身份非常接近,并且我们对人的价值还非常无知。达成对首选方向的共识将非常缓慢。缓慢应成为强制性规制。N.S.: In fact, that's a good segue into the topic of AI, which of course everyone is talking about, given the recent success of chatbots and AI art programs. Where do you land on the spectrum of enthusiasm. Does this new technology change everything, or is it overhyped? What do you expect to change as a result of the new efflorescence of AI? Will the relationship between humanity and the technium fundamentally alter?实际上,这是一个很好的过渡到AI话题的方法,当然,考虑到聊天机器人和AI美术程序的最近成功,每个人都在谈论它。您对热情的谱系有何看法?这项新技术是否改变了一切,或者被过度宣传了?您期望由于AI的新繁荣而发生什么变化?人类与技术之间的关系是否会根本性地改变?K.K.: Despite the relentless hype, I think AI overall is underhyped. The long-term effects of AI will affect our society to a greater degree than electricity and fire, but its full effects will take centuries to play out. That means that we’ll be arguing, discussing, and wrangling with the changes brought about by AI for the next 10 decades. Because AI operates so close to our own inner self and identity, we are headed into a century-long identity crisis.This span is particularly notable because we have been discussing the effects of AI for 100 years already. In fact, never before have humans so thoroughly rehearsed something as far ahead as AI. Long before it arrives, we’ve been imagining its pros and cons, and trying to anticipate it for several generations. This serious rehearsal is an improvement in our culture, and a pattern we should continue for other technologies like genetic engineering, the metaverse, and so on. The upside to a long rehearsal is that upon arrival, we should not be too surprised. The downside to a long rehearsal is that there are more ways something goes wrong than right, and we’ve had time to think of all of the horrible stuff, so that the positive conjectures feel mythical and unreal.But now, here are chatbots, commercially available. However, in 30 years we will look back to 2023 and everyone then will agree that while something is happening with artificial smartness, we do not have anything like AI now. What we tend to call AI, will not be considered AI years from now. One useful corollary of this is that from the perspective of looking back 30 years hence, there are no AI experts today. This is good news for anyone starting out right now, because you have as much chance as anyone else of making breakthroughs and becoming the reigning experts.Nonetheless, right now machine learning is overhyped. It is not sentient, and not as smart as it seems. What we are discovering is that many of the cognitive tasks we have been doing as humans are dumber than they seem. Playing chess was more mechanical than we thought. Playing the game Go is more mechanical than we thought. Painting a picture and being creative was more mechanical than we thought. And even writing a paragraph with words turns out to be more mechanical than we thought. So far, out of the perhaps dozen of cognitive modes operating in our minds, we have managed to synthesize two of them: perception and pattern matching. Everything we’ve seen so far in AI is because we can produce those two modes. We have not made any real progress in synthesizing symbolic logic and deductive reasoning and other modes of thinking. It is those “others” that are so important because as we inch along we are slowly realizing we still have NO IDEA how our own intelligences really work, or even what intelligence is. A major byproduct of AI is that it will tell us more about our minds than centuries of psychology and neuroscience have.K.K.:尽管AI一直被炒作,但我认为它总体上被低估了。长期来看,AI的影响将比电力和火灾对我们的社会产生更大的影响,但其全部效应需要几个世纪才能显现。这意味着我们将在未来10年中就由AI带来的变化进行争论、讨论和斗争。由于AI的作用如此接近我们自身的内在自我和身份,我们将进入一个持续一个世纪的身份危机。这个时期特别值得注意,因为我们已经讨论了100年的AI影响。事实上,人类从来没有像对AI这样从很远讨论一件事情。在它到来之前,我们已经想象了它的利弊,并有几代人试图预测它。这种认真的准备是我们文化的一种改进,也是一个我们应该为其他技术如基因工程、元宇宙等继续保持的模式。长时间的排练的好处是,一旦到达,我们不应该太惊讶。长时间排练的缺点是,事情出错的方式比正确的方式更多,而我们已经有时间想到所有可怕的事情,因此积极的猜测感觉像神话般不真实。但现在,在商业上已经有聊天机器人可用。然而,30年后,我们将回顾2023年,每个人都会同意,虽然人工智能的智能正在发生变化,但我们现在没有类似人工智能的东西。我们倾向于称之为人工智能的东西,未来几年将不被认为是人工智能。这个有用的推论是,从回顾30年前的角度来看,今天没有人工智能专家。这对于现在开始的任何人来说都是好消息,因为你有与其他人一样的机会取得突破并成为主宰专家。然而,目前机器学习被过度炒作。它不是有感觉的,也没有看起来那么聪明。我们正在发现,我们作为人类所做的许多认知任务比我们想象的更愚蠢。下棋比我们想象的更机械化。下围棋比我们想象的更机械化。绘画和创造性的创作比我们想象的更机械化。甚至用单词写一段话也比我们想象的更机械化。到目前为止,在我们的大脑中可能有十几种认知模式中,我们已经成功合成了其中的两种:感知和模式匹配。我们在人工智能中看到的一切都是因为我们能够产生这两种模式。我们在合成符号逻辑、演绎推理和其他思维模式方面没有取得任何真正的进展。正是这些“其他”非常重要,因为当我们一步步前进时,我们慢慢意识到我们仍然不知道我们自己的智力是如何运作的,甚至不知道智力是什么。人工智能的一个主要副产品是它将告诉我们比心理学和神经科学几个世纪还要多的关于我们的思维的信息。There are books full of lessons waiting to be said about about AI as it is being born, so let me state just a few provocative points about what I expect:We should prepare ourselves for AIs, plural. There is no monolithic AI. Instead there will be thousands of species of AIs, each engineered to optimize different ways of thinking, doing different jobs (better than a general AIs could do). Most of these AIs will be dumbsmarten: smart in many things and stupid in others. Expect frustration about how stupid they can be while being so smart.Theoretically any computer can emulate any other computer, but in practice it matters what substrate a computer runs on. No matter how fast or “smart” an AI may be, as long as it runs on silicon it will remain an alien. Its intelligence will be brilliant, but alien. Its humor will be sharp, but a little off. Its creativity will be intense, but a little otherworldly. The best framework for understanding complex AIs is to think of them as artificial aliens. Think of a robot Spock, super smart, but not quite human.Consciousness is a liability and not an asset in an AI. It is distracting and dangerous. We want our AIs to just drive, and not get anxious. Many expensive AIs will be advertised as “consciousness-free.”The relationship AIs will have with us will tend towards being partners, assistants, and pets, rather than gods. This first round of primitive AI agents like ChatGPT and Dalle are best thought of as universal interns. It appears that the millions of people using them for the first time this year are using these AIs to do the kinds of things they would do if they had a personal intern: write a rough draft, suggest code, summarize the research, review the talk, brainstorm ideas, make a mood board, suggest a headline, and so on. As interns, their work has to be checked and reviewed. And then made better. It is already embarrassing to release the work of the AI interns as is. You can tell, and we’ll get better at telling. Since the generative AIs have been trained on the entirety of human work — most of it mediocre — it produces “wisdom of the crowd”-like results. They may hit the mark but only because they are average.Because AIs are being trained on average human work, they exhibit the biases, prejudices, weaknesses, and vices of the average human. But we are not going to accept that. Nope. We want the ethics and values of AIs to be better than ours! They have to be less racist, less sexist, less selfish than we are on average. It is NOT difficult to program in ethical and moral guidelines into AIs — it is just more code. The challenge is that we humans have no consensus on what we mean by “better than us,” and exactly who “us” is. The problem is not the AIs. The problem is that the AIs have illuminated our own shallow and inconsistent ethics — even at our best. So making AIs better than us is a huge project.I am not aware of any person who has lost their job to an AI so far. There may be a few professions — like the person paid to transcribe a talk into text — that will go away, but most jobs will shift their tasks to accommodate the emerging power of AI. Most of the worry about AI unemployment so far is third-person worry — people imagine some other person getting fired, not themselves.Different AIs will have different personalities. We already see this with image generators; some artists prefer working with one rather than another. It takes an extremely close intimacy to get your intern AI to help you produce great work. Some people are 10x and 100x better than others with these tools. They have become AI whisperers. Other people are repelled by this alienness and want nothing to do with it. That is fine. But 90% of AIs will never be encountered by anyone. That is because the bulk of AIs will run hidden in back offices. They will metaphorically reside in the walls so to speak, like plumbing and electrical wires -- vital but out of mind. This invisibility is the mark of the most successful technologies — to be ubiquitous but not seen.Before this becomes a book, I’ll stop there.有关人工智能的教训已经有很多本等待被说出来,所以让我就我所期望的提出一些具有挑衅性的观点:我们应该为多种人工智能做好准备。并不存在一个统一的人工智能,相反,将会有成千上万种人工智能物种,每一种都被设计优化不同的思维方式,执行不同的工作(比普通人工智能做得更好)。这些人工智能中的大多数会是“聪明笨蠢”的,在很多方面很聪明,但在其他方面很傻。预计会有一些挫败感,因为尽管它们很聪明,但它们也可能很愚蠢。理论上,任何计算机都可以模拟任何其他计算机,但实际上,计算机运行的基质很重要。无论人工智能有多快、多“聪明”,只要它运行在硅基质上,它将始终是外来的。它的智慧将是卓越的,但很奇特。它的幽默感将是犀利的,但有点偏差。它的创造力将是强烈的,但有点来自异世界。理解复杂人工智能的最佳框架是将它们视为人造外星人。想象一下机器人斯波克(Spock),超级聪明,但并非完全像人类。意识对于人工智能来说是一种负担而不是资产。它会分散注意力,也会带来危险。我们希望我们的人工智能只是驱动,而不会感到焦虑。许多昂贵的人工智能将被宣传为“无意识”的。人工智能与我们的关系会倾向于成为合作伙伴、助手和宠物,而不是神。这一轮原始的人工智能代理,如ChatGPT和Dalle,最好被视为通用实习生。似乎今年第一次使用它们的数百万人正在使用这些人工智能来做他们如果有个人实习生会做的事情:写草稿、建议代码、总结研究、审查演讲、头脑风暴、制作心情板、建议一个标题等等。作为实习生,他们的工作必须被检查和审核。然后让它更好。将AI实习生的工作原封不动地发布出去已经很尴尬了。你能看出来,而且我们会越来越擅长看出来。由于生成人工智能已经在人类工作的全部范围内进行了培训——其中大部分是平庸的——因此它产生了“群众的智慧”式的结果。他们可能会击中要害,但这只是因为它们是平均水平。由于人工智能正在接受平均人类工作的培训,因此它们表现出平均人类的偏见、偏见、弱点和恶习。但我们不会接受这一点。不会。我们希望人工智能的道德和价值观比我们更好!他们必须比我们平均水平的种族更不种族主义、更少性别歧视、更少自私。将伦理和道德准则编程到人工智能中并不困难——这只是更多的代码。挑战在于我们人类对于“比我们更好”是什么意思以及“我们”到底是谁没有共识。问题不在于人工智能,而在于人工智能已经照亮了我们自己肤浅而不一致的伦理——即使在我们最好的时候也是如此。因此,让人工智能比我们更好是一个巨大的项目。我不知道有没有人失去工作机会,被人工智能所取代。可能会有一些职业——比如被付费将讲话转录成文本的人——将会消失,但大多数工作将调整他们的任务来适应人工智能的新兴力量。到目前为止,大多数人对于人工智能导致失业的担忧都是第三人称的——人们想象其他人被解雇,而不是自己。不同的人工智能将有不同的个性。我们已经在图像生成器上看到了这一点;一些艺术家更喜欢使用其中一种。需要极其密切的亲密关系才能让你的实习生人工智能帮助你产生优秀的作品。有些人用这些工具比其他人好10倍甚至100倍。他们已经成为人工智能的耳语者。其他人则被这种异类所排斥,不想与之有任何关系。这很好。但90%的人工智能将永远不会被任何人遇到。这是因为大部分人工智能将在后台运行而被隐藏起来。它们将象征性地驻留在墙壁中,就像管道和电线——重要但被忽视。这种隐形是最成功的技术标志——无处不在但不受关注。在这成为一本书之前,我就停在这里。N.S.: I share your optimism about AI. But let's briefly talk about the times when futurism fails. Two years ago, a lot of people in the tech world were talking breathlessly about -- and throwing very large amounts of money at -- "web3", a catch-all name for crypto stuff. We heard wide-eyed tales about how crypto would usher in an era of permissionless commerce, a new ownership society, financial independence, a new efflorescence of online creativity. Instead, essentially everything created in that crypto boom turned out to be either a Ponzi scheme, a pump-and-dump scam, or simply wildly overoptimistic. To cite a less dramatic example, the gig economy was supposed to revolutionize human labor and income and land use, but its impact, while real, has been much more modest than people expected. Is there any systematic reason these technological visions fell short? Is it possible to tell in advance what new limbs our technium will see fit to graft onto its body? Or is it just a matter of taking a lot of shots on goal and seeing what works?我和你一样对AI充满乐观。但是让我们简要谈谈未来主义失败的时候。两年前,许多科技界人士热烈地谈论着“web3”,这是一个包罗万象的加密货币概念。我们听到了有关加密货币将引领无许可商业、新的所有权社会、财务独立、在线创造力的新时代的令人瞪大眼睛的故事。然而,实际上在加密货币繁荣期间创造的几乎所有东西都被证明是庞氏骗局、短线操作骗局或简单地过度乐观。作为一个不那么戏剧性的例子,零工经济本应该革命性地改变人类劳动、收入和土地利用,但它的影响,虽然真实,但比人们预期的要小得多。这些技术愿景缺乏系统性的原因吗?有可能事先知道我们的技术将会植入哪些新的肢体吗?还是只是尽可能地投入大量的资金,然后看看哪些有效呢?K.K.: The baseball oracle once said: predictions are hard to make, especially about the future. I think it is hard enough to predict the present. If we could predict the present, we’d be half done. Most of my work is trying to see what is actually happening right now.Futurism fails all the time, but I actually think we are getting better at it. For one, we tend to over estimate change in the short term, and underestimate it over the longer term, and I see evidence of us beginning to learn that lesson and shift our expectations. Two, we’ve learned to expect that even nice technologies bite back. Now from the get-go we assume there will be significant costs and harms of anything new, which was not the norm in my parent's generation. Scenario planning, once esoteric, is now standard corporate planning procedure. Scenarios are less about predicting exactly what will happen and more about imagining the range of possible futures so that you are not surprised when one of them happens, and you can use the scenarios to generate contingency plans — what would we do if the world headed in this direction? This is a giant step forward in managing the future.This does not prevent a future fail like what happened with crypto. The astronomical volume of money and greed flowing through this frontier overwhelmed and disguised whatever value it may have had. If you prohibited the mention of “money”, “making money” or “saving money” from any discussion of crypto, it was always a very short conversation. I suspect there are some powerful ideas and tech possible using blockchain, but these value propositions are not going to show up until crypto is seen as an expense instead of a way of making money. It has to be valuable while it loses money, and that has not happened yet.I think the fail of crypto is less a failure of futurism than a flop in culture in general. When I first experienced virtual reality in 1989, I felt sure the world would change in the next 5 years. It’s been 30 years now and the state of VR is about the same. I was part of a small group of techno-enthusiasts who thought believable VR was imminent, and got it wrong. What’s been different about crypto is that the main boosters have not been a small group of techno-enthusiasts. Rather crypto has been promoted sky high by athletes, celebrities, shoe companies, day traders, politicians, and hustlers. Half of the usual technology evangelists, like myself, have been silent on crypto, or openly skeptical of it. For every tech promoter of crypto there’s been a very educated tech criticism of it. And I don’t mean the usual tech criticism of “this is bad,” I mean the tech criticism of “this does not work.” (I would cautiously add the word “yet”.) So to half of the tech and futurist community, it is only a half-fail. And taking to heart the lesson #1 above, crypto still has potential to be revolutionary in the long run. The sweet elegance of blockchain enables decentralization, which is a perpetually powerful force. This tech just has to be matched up to the tasks — currently not visible — where it is worth paying the huge cost that decentralization entails. That is a big ask, but taking the long-view, this moment may not be a failure. I would say the same about the gig economy — let’s give it more time to judge; it’s barely been around 5,000 days.K.K.:棒球神预言说过:预测很难,特别是关于未来的预测。我认为预测现在已经很难了。如果我们能预测现在,我们就完成了一半工作。我的大部分工作是试图了解当前实际发生的事情。未来主义经常失败,但我认为我们越来越擅长预测未来。首先,我们往往高估短期内的变化,低估长期内的变化,我看到我们开始学习这个教训并调整我们的期望。其次,我们已经学会了预期即使是好的技术也有负面影响。现在从一开始,我们就假定任何新的事物都会有显著的成本和危害,这在我父母的一代人中不是常态。情景规划曾经是玄学的,现在已成为标准的公司规划程序。情景规划不是准确预测会发生什么,而是想象可能的未来范围,以便当其中一个发生时不会感到惊讶,并可以使用情景规划生成应急计划——如果世界朝这个方向发展,我们该怎么办?这是管理未来的重大进步。这并不能防止未来的失败,就像加密货币的失败一样。通过这一前沿流动的巨额资金和贪欲,淹没并掩盖了它可能具有的任何价值。如果在任何加密货币的讨论中禁止提及“钱”、“赚钱”或“省钱”,那么这将是一个非常短暂的对话。我怀疑使用区块链可能有一些强大的思想和技术,但除非将加密货币视为一种费用而不是赚钱的方式,否则这些价值主张不会出现。它必须在亏损的同时具有价值,而这还没有发生。我认为加密货币的失败不是未来主义的失败,而是文化总体的失败。1989年我第一次体验虚拟现实时,我确信世界将在接下来的5年内发生改变。现在已经过去了30年,VR 的状态几乎没有变化。我是一小群技术热情者中的一员,他们认为可信的虚拟现实即将到来,并被证明是错误的。不同之处在于,加密货币的主推者不是一小群技术热情者。相反,运动员、名人、鞋类公司、日间交易者、政治家和骗子将加密货币推到了天上。一半的技术布道者(包括我自己)对加密货币保持沉默或公开怀疑。对于每个推动加密货币的技术布道者,都有一个非常受过教育的技术批评者。我不是指“这是坏的”的常规技术批评,而是指“这不起作用”的技术批评。(我谨慎地加上“尚未”这个词。)因此,对于技术和未来主义社区的一半人来说,这只是半个失败。根据上面的教训#1,长期来看,加密货币仍有可能具有革命性。区块链的甜美优雅实现了去中心化,这是一个永久强大的力量。这项技术只是需要与任务相匹配,而目前这些任务尚不可见,它是否值得支付分散的巨大成本。这是一个很大的要求,但从长远来看,这一时刻可能不是一个失败。我对零工经济也持同样的看法——让我们给它更多的时间来判断;它只存在了不到5000天。N.S.: I usually close these interviews by asking what someone is working on right now. In your case, I feel like I'll just read whatever it is when it comes out! So today I'll switch it up a bit. What do you think young people should be working on right now? What's exciting, new, and important in the world of 2023?我通常在采访结束时会问对方正在从事什么工作。在你的情况下,我感觉当作品发布时我会读到它!所以今天我会换个问题。你认为年轻人现在应该从事什么工作?在2023年,什么是令人兴奋、新颖和重要的事情?K.K.: My generic career advice for young people is that if at all possible, you should aim to work on something that no one has a word for. Spend your energies where we don’t have a name for what you are doing, where it takes a while to explain to your mother what it is you do. When you are ahead of language, that means you are in a spot where it is more likely you are working on things that only you can do. It also means you won’t have much competition.Possible occupations that are ahead of our language would be person-that-sits-with-you-when-you-are-ill, story-teller-for-the-company, AI-whisper, media-fact-check-verifier, wireless-troubleshooter, eugenic-adviser-diviner, roaming-robot-repair-person, influence-matchmaker, polyandry-therapist, applied-historian-in-residence, and maybe, full-time-note-taker.My second bit of counsel is anti-career advice (taken from my new book Excellent Advice) and it goes like this:Your 20s are the perfect time to do a few things that are unusual, weird, bold, risky, unexplainable, crazy, unprofitable, and looks nothing like “success.” The less this time looks like success, the better it will be as a foundation. For the rest of your life these orthogonal experiences will serve as your muse and touchstone, upon which you can build an uncommon life.K.K.:我对年轻人的通用职业建议是:如果有可能的话,你应该努力从事一些没有专业术语的工作。把精力放在我们没有专业术语的地方,花时间向你的母亲解释你所做的事情。当你在语言之前时,这意味着你处于一个更有可能做出只有你能做的事情的位置。这也意味着你没有太多的竞争对手。可能超越我们语言的职业包括陪伴病患者的人、公司故事讲述者、AI神秘人、媒体事实核查验证人员、无线故障排除专家、优生顾问预言家、流动机器人维修人员、影响力牵线搭桥人、一夫多妻治疗师、驻场应用历史学家,以及全职记录员。我第二个建议是反职业建议(取自我的新书《优秀的建议》),是这样的:你的二十多岁是做一些不寻常、奇怪、大胆、冒险、无法解释、疯狂、不赚钱、看起来与“成功”毫不相似的事情的完美时机。这个时期看起来与成功越不相似,它作为基础将越好。你一生中的这些正交经历将成为你的灵感和准则,你可以在其上建立一个不同寻常的生活。以上是全文内容,感谢阅读顺带一提:我太喜欢最后一段了。

2023-1-27 17:43

Notion — 产品驱动增长的思考(二)

继续之前聊Notion的话题,间隔一段时间,用本文把第二部分补上。需要回顾前文的请阅读 Notion — 产品驱动增长的思考(一)➀ 局限性在距离写下前文的这段时间里,对Notion这类SAAS工具也有了一些新想法。首先,本文所涉及的Notion增长方式大量参考Jaryd Hermann所写的How Notion Grows。其还原度有多高是无法证实的,因为Hermann并非Notion创始团队的成员。当然从成文的质量和逻辑看,应该经过相当的考究和公开资料收集,不至于太离谱。但退一步讲,即便这些方法所言不虚,也无法得出“照着这样做我也行”的结论。因为时间点、宏观环境、客户性质都会对一款以To B为主的产品有巨大的影响。因此我更愿意把本文当做某种启发,就是在这些具体手段的背后,有哪些存在共性的路径和特质(当然,共性对每个读者与产品来说仍然各有不同)。比如Ivan在创业受阻后搬到日本生活这个有趣的细节,反而对我的触动最大。另一方面。所谓的PLG(产品领导的增长)很容易引起误导,让人觉得依靠打造好产品就能获得不错的结果,而事实是所谓PLG的几家明星企业,近年来在团队比例中不断加大销售人员的比重。从产品的角度出发当然没错,但这并不意味着销售和公关能力就不再重要,事实上后者是构成产品的重要部分,产品人常见的误区在于认为产品只是自己这伙人的事。关于PLG,有空可以听下这期播客:PLG这些年:进化,误区与反思➁ 模板是一种同理心提到Notion的话题,模板是绕不开的,已经有大量谈论它的文字。因此由模板所导致的社区分享、降低用户门槛、实用性balabala那些分析实在不差我这一点孤陋寡闻的絮叨。而且那些道理也十分显而易见,再去掰开揉碎讲,有凑字数之嫌疑。所以关于模板,我倒是想谈谈它背后所代表的一种产品人的心态:用户同理心。什么意思呢?其实很多产品团队,会把更多精力花在“我如何好”这个问题上,而不是“你能用我做什么”这个问题上。这不是团队水平的问题,而是站在什么视角上与用户沟通的问题。这让人想起互联网金融刚刚兴起时,很多基金公司都在卖理财产品,但没有一家解释了“你能用我做什么”,而是不停在说自己的资产有多安全,配置有多讲究,基金经理如何如何厉害。可对于理财这种业务,一般老百姓关心的无非是“收益是多少,什么时候能取”这些基本问题。金融机构习惯去强调自身的特性和强大,一定程度上缺失了和用户之间的“翻译层”,直到余额宝的出现。这就是典型的同理心缺失,对于有门槛的产品和业务而言,这种思路相当致命。而Notion作为一款低代码工具,显然是具有较高门槛的。我身边就有很多人一开始被它的颜值吸引,上手后很快被劝退。毕竟页面嵌套、数据库管理这些玩意儿让正常人一脸懵逼是很正常的。模板在这个时候就非常有用。模板所提供的价值,大白话来说就是“直接告诉你我能干嘛”,而且是颗粒度最细的那种解释。我们可以想一下,如果你想一个朋友推荐Notion,说它们是“具备低代码能力、可自定义数据库的内容管理与协作平台“,估计大部分人扭头就走了。而如果直接给他看你用Notion做的读书笔记、项目管理、甚至自己小店的经营流水,他或许一下就理解了。所以模板对Notion而言,实际上是一种产品心态的体现,就是你先别关心我是什么,你先理解一下我能做什么。在本系列的上文中,提到过Notion习惯采用类比同行的方式,其实也是在解决类似的问题。无独有偶,另一家明星产品Airtable也格外强调模板在增长上的应用,因为此类SAAS工具普遍在初期都有用户认知门槛高的特点,着而从他们的增长曲线上可窥一斑,区别于典型的To C产品,它们的增长往往有后置的特点。这里稍微聊一下飞书。一直以来,飞书的产品体验和功能在产品经理的小圈子里都备受推崇,我个人的小公司也是飞书的用户,对这点也赞同。可当他面临与钉钉的竞争时,就会遇到”我有多好“和”你能用我做什么”的矛盾。比如OKR的理念,对大部分企业老板来说,可能不如”显示员工已读消息“这样的小功能来的实用。刘飞的「聊聊飞书」里对这一点做了很好的讨论。再比如飞书的多维表格,功能同样很好,可在小红书等社交媒体上却搜索不到太多用多维表格制作模板或者用例的分享,相比之下如果在小红书上搜索Notion,或者在Medium上搜索Airtable,你却能看到大量分项模板的内容。这让普通人能更好的理解我能用你做什么。➂ 所谓的自下而上所谓自下而上,Hermann是这么定义的:你的目标是公司内部的个人贡献者,他们尝试产品,然后在他们的团队中为你传播信息,最终使你能够在公司范围内销售和扩展产品。这里的好处是你的团队需要更少的触摸来销售,更低的客户获取成本(CAC) ,更快的销售周期,你可以更好地预测销售数字。这包括  Slack ,   Datadog, GitHub, Coda。在这一部分我不想展开太多去谈,总觉得这种所谓自下而上的产品和销售策略,在不同环境下,尤其是国内能有多大的适用性,我深感怀疑。它听起来过于的乌托邦,有点类似想用用户的口碑传播替代市场推广费用的逻辑。但凡你有过几次实操业务的经验,就能明白这种希望多少有些不靠谱。而关于社区的问题更是如此。国内在社区文化和海外明显不同,即便在一些小圈子内能形成传播,这种影响力也是相对较小的。而关于Notion究竟如何通过自下而上的方式(如果真的存在这个过程)完成了前期增长,大概只有等创始团队的人出来说说了,可又不免有浓厚的公关色彩。自下而上要解决的核心问题,其实就是实际用户和转化决策者分离的问题,这在任何环境下都是难点。而且不同的企业文化、不同的行业属性,解法可能完全不一样。比如去年大火的Figma,由于专注在设计领域,在推动销售时的路径也许就相对清晰,而换成其他领域也就不好说了。➃ 处理挫折也许是自己的挫折太多了,在所有关于Notion发展史的文字里,让我最感兴趣的反而是Ivan在初期受挫后,移居日本的事情。两年多的时间里,他们一直在努力工作ーー现在我们回到了2015年,就像我说的ーー他们几乎陷入了创业公司的坟墓。一个关键问题是,他们的应用程序建立在并不理想的技术堆栈上,而且不断崩溃。他们的原始资金正在燃烧,没有收入来补充,他们面临着一个艰难的选择,重新开始,或者现金枯竭。“如果你看看烧钱的速度,我们大概都会死在一起,”Ivan说。“这没什么选择的余地。”Ivan和Simon开始重建技术部分。他们离开了昂贵的 San Fransisco,前往东京——在那里,拉面会更便宜,他们可以在那里转租旧金山公寓,靠旧金山和京都之间的租金差额生活。他们不认识任何人,也不会说一点日语,所以他们每天花18个小时思考、设计、编程和创建 Notion。无比真实。太多创业故事只讲述光鲜亮丽的成功和修饰过的清奇思路,却避而不谈几乎必然要面对的焦头烂额。大部分的产品与其说是没有成功,不如说是没能坚持到成功的那天。你可能认为这是一种诡辩的说法,但如果仔细思考,就能发现二者之间明显的差别。Ivan在此的选择是移居到更便宜的地方,为生活留出安全边际。如果我们洞悉金钱的本质就是时间,这样的选择在逻辑上就更加合理了。大部分的产品和生意在前期几乎都会遇挫,这是概率问题而非能力问题,而度过这段折磨期的利器除了不靠谱的热情之外,就是相当靠谱的金钱了。这也是我个人无比反对承担巨大风险去创业的原因,all in的思路在大厂里经常被渲染为一种正能量的精神,但你只要稍微懂点投资的逻辑,就能明白这里面的算计。所以无论何时,为自己留出有效的安全边际都是有益的做法,尤其在从事所热爱的事时更是如此,否则心态的焦虑几乎是一种必然,一旦动作变形,往往难以挽回。Ivan和Simon在移居日本时,所放弃的不仅是熟悉的生活环境,还有一票团队。这又是一个挑战人性的选择。我们往往把团队和伙伴都看成自己巨大的资源和助力,Naval甚至称其为杠杆的一种。但在某些时刻,也必须要去学会放弃。Yonatan Zunger在Medium上谈论过对于“沉没收益谬误”的看法,对于那些曾经帮助我们成功的人和思维方式,我们往往难以割舍,但过去发生的事情在本质上已经”沉没“,不应该影响接下来的选择,这和沉没成本是一样的道理。➄ 没有结论案例分析的有趣时之处,在于可以根据一条线索不断挖掘相关要素,而他的问题也在于此,我们无法确定这些要素之间的相互关系,无法说”因为A导致了B“。所以没必要纠结所谓的结论,也不可能有结论。分析的价值可能是打开一些思路和启发,就像开篇所说,事物间肯定存在一些共性,能多多少少触及一些本质的地方,也就不枉费时间阅读这些资料了。这也是我喜欢读传记的原因,它提供叙事和启发,不提供答案,后者叫成功学。ReferencesHow Notion Grows by Jaryd Hermann「聊聊飞书」 by 刘飞Excel也许是Jobs“思维自行车”的最佳实践 by 汗青Excel Never Dies by Packy McCormickCopyright © 青陈 QingChen All rights reserved.

2022-12-7 6:33

Notion — 产品驱动增长的思考(一)

使用Notion有几年的时间了,远远算不上精通,但因为把整体的Newsletter都放在了上面,也多少算是有点发言权。我自己对Notion的感情是经历了几个阶段的变化,从感到惊艳到放弃,再到重新认识并高频使用,中间对这个产品也有些小思考,这次结合Jaryd Hermann所写的《How Notion Grows》,聊聊自己对Notion的实际感受,主要是关于产品与增长的话题上。“集成场景”的产品思路Notion是一个典型采用产品驱动增长策略的例子。但他并未以小而美的功能起步,而是把诸多场景用例捆绑在自己身上,它一上来就是个大而全的家伙。这与传统产品增长的价值观并不相符,我们听到的经典案例往往强调产品定位集中且精准,控制体量。Notion不是这样做的,它提供的是一种应用集成式的体验,而非所谓的垂直聚焦,并且它证明了这种思路实际上是可行的。为什么Notion这样选择?在它之前,已经有很多竞争对手试图通过满足电子表格的某一单一场景来进入市场,这符合传统的增长理念,定位明确,强调体验的垂直集中,然而这些尝试却很难获得巨大成功,为什么?因为如果你只满足Excel的某一个场景应用,你就很难让用户真正的迁移,也就是说最终还是会被巨无霸反噬:“说到底,老式的电子表格还是会来吃掉你的午餐。使用 Asana 与客户协作?有个电子表格可以了。使用 Trello 跟踪项目状态和所有者?电子表格仍然可以替代。使用 Todoist 进行个人任务管理?是的,谷歌表格也可以做到这一点。”— Josh Gallant, Foundation Inc这是选择做聚焦场景的问题,当你的体验无法溢出,用户最终会回到那个巨无霸的怀抱里。但为什么人们都在警告你不要做大而全的产品呢?因为这样的产品经常导致“什么都有但什么都不精”,一堆六十分的功能放在一起,毫无魅力。所以问题的重点从来不在于你的产品是否大而全,而在于你有没有独具特色的杀手功能切入市场,也就是所谓的“楔子产品”。Notion在这一点上做到了,此时它的全面反倒变成了优点。这是一个类似T字型的战略,有广度,也有深度。Notion选择了三个典型的单人场景作为切入点:Wiki、项目管理、笔记和文档管理。如果我们观察所谓超级App的发展路径,可以看到诸如微信、支付宝这样的产品在终极形态上往往也符合T字型的特征,但在时间序列上有所不同,杀手级应用往往先被建立,再慢慢丰富应用场景,这套演变逻辑的背后是互联网流量变现的思维,即先获取用户,再进行LTV的挖掘。Notion在本质上和这些超级应用是类似的,区别是它在面试之初就是这种形态,而非花几年时间逐步进化。正如前文所述,其原因是因为它要进入的是一个存量市场,仅依靠单一应用的体验,或者某个动人的小功能是极难迁移用户的。也许你在某个场景下的功能做的非常出色,但这不一定值得我抛弃Google Docs或Excel。超级应用模式曾经一度被行业质疑,太重、复杂都是我们警惕它的原因。但近些年这种风评已经急剧变化,硅谷诸多公司和企业家公开表达对此模式的肯定,Instagram、Spotify等产品都像大而全的理念靠拢,Musk更是多次公开示好微信的模式。Notion选择了这个策略,使它不再像之前那些垂直产品般场景狭窄,但也带来了新问题:如何解释清楚自己?从哪些功能让用户入手并记住自己?如何直面已经存在的巨头竞争?楔子功能与单人模式前文提到,选择多场景集成的模式是没有问题的,但是楔子产品至关重要。它能向用户解释这款产品的价值,也是重要的用户引入触点,或者俗称的获客。Jaryd Hermann认为Notion选择的触点产品有:Wiki、项目管理、笔记和文档管理。说来有趣,我最早接触到Notion是从笔记的场景开始的,当时急于找一个One note替代品,后来发现这个定位完全不适合我,最终选择的是系统原生的备忘录,Notion则变成了自己做wiki和建站的第一工具。经常逛小红书,会发现大部分“圈外人”被Notion吸引的原因其实是漂亮的模板和他的笔记整理功能。模板后面会聊到,先说笔记这件事,我一直觉得大部分人在新鲜劲过了之后,可能很难坚持使用。抛开访问速度的问题不谈,移动端的体验和随时记录的便捷性并不是Notion擅长的,更别提基于web的框架让离线的体验一直是缺失的,我第一次决定放弃用Notion记笔记就是在飞机上,突然来了想法却发现没发使用,只能用记事本代替,太不方便了。后来发现了Notion的定位本身就不太适合作为随时记录的笔记工具,而更接近内容整理和知识库归类,所以把它和Obsidian、Craft、Bear这些应用去做类比其实并不合适。这是有趣的地方,我相信相当多的朋友是和我一样,被笔记的功能带入坑的,然后又因为别的功能留了下来。这是一个挺理想的留存路径,即获客和留存依赖了两个场景,前者是高频低门槛的,后者是需要一定的学习,一旦沉淀就不想离开的。比如我的newsletter完全绑定了Notion,如果要迁移成本可想而知。这就是 Notion 遵循的“为了 X 而来,为了 Y 而留下”的理念。笔记面向的用户群可能是最为广阔的,而wiki则面向固定的深度用户,而项目管理则是更加垂直的办公需求。说到面向企业里的用户,Notion体现了另一个设计聪明的地方:提供优异的单人模式。作为一个共享协作办公的产品,如何让团队接受,让企业买单是个重要问题。而很多软件如果你的团队不使用,对于个体来说是几乎是不可用的,比如Slack,此时即便你的体验再优秀,用户也没有机会发现,因为体验它的摩擦成本太高,改变一个团队或公司的采购计划需要大量的努力。Notion则不然,它的几个楔子功能都提供了类似游戏里的单人模式。这样的好处是,即便你的团队在使用其他产品,Notion对我们来说依然有价值,你可能用它记笔记、整理文档,然后就有机会慢慢“自下而上”的影响团队其他人,一个很有效的增长策略。这再次证明了选择“集成模式”带来的好处,总有一款适合你。优秀的楔子功能加上单人模式,最大程度降低了用户接触Notion的门槛,以及形成自传播的可能性。降低摩擦成本是所有进入存量市场竞争的产品要重点考虑的,因为如果你很难在提供体验之前就让用户放弃原来使用的服务。尤其是像Notion这样多场景产品,引导用户平滑的进入初体验非常关键。拥有一个功能更多的产品是可以的,但是你需要创建一个楔子来帮助你解释你的产品,然后引导人们“解锁”更有价值的用例。高“成图率”的UI风格正如前文所述,很多用户(尤其是女孩子)都是在小红书上被Notion“种草”的。其简洁又独特的视觉风格起到了关键作用。尤其是配合Notion的看家法宝——模板之后,即便普通人也能创造出优雅的极简主义风格主页,很适合在读图的社交媒体上做传播。尤其是这些优雅的页面用户可以自己动手设计,每个人都可以创造不同的作品,它巨大地刺激了用户分享炫耀的意愿。这个道理很像在零售领域强调的“成图率”指标,即:越能激励用户分享晒图的产品,其自传播效率越高,显然Notion是一个“成图率”极高的产品。在这个颜值即正义的年代,Notion设计了一种结合了日式气质的极简风格,在干净的淡灰色当中大量应用留白,通过组件的标准化制造出文字的节奏。因此,用户也许只是用它做了一个简单的手帐,但在社交媒体上由于其漂亮的视觉风格,它会格外抢眼。这就会引起好奇和点击,观看者诞生一种“我也想拥有这么漂亮的手帐”的想法,进一步刺激注册和分享。在Notion之前,没有电子表格和在线协作平台是这么注意自己的颜值的。Notion的插画风格甚至引起过模仿的热潮,甚至有Notion Avatar Maker“Notion风格”头像的制作网站,其受欢迎的程度可想而知。学设计出身的我,深知做产品不能过于迷恋外在而忽视功能,但不得不说,一套出色的UI或视觉识别系统,往往是让别人记住自己的好方法。Notion在这一点上非常成功,这种独特的美学已经成为其品牌资产中的重要部分。巧妙的定位策略Notion在进入存量市场的另一个特点就是:它借用竞争对手的影响力来为自己做心智定位,强调自己在功能上和那些知名竞品的差异,其实这是一种很聪明的做法,就好像当年京东去美国上市,提到我们是“中国的亚马逊”,美国投资者立刻就明白了。这是后进者的优势,存量市场已经被对手做完了用户教育,这个成本被先到的对手支付了。你的竞争对手已经花费了大量的时间和资源为他们自己创造意识,并确保最终用户了解他们所做的事情——现在你正在利用这一点迅速帮助人们了解你所做的事情,然后解释你的差异。这句话类似于“我们是 X 的优步”(We’re Uber for X) ,但实际上很有用,而不是用来吸引投资者的空想声明,因为你说的是“我们正在取代 X”。 当然,这是一个更大胆的陈述,但是它更有用,因为人们不需要进行任何精神体操来弄清楚你在做什么。 —— Jaryd Hermann具体来说,Notion在自己的几个核心场景上,都运用了竞争对手帮忙自己进行定位,这在他们的引导页面上有非常直接、明确的体现。它直接告诉用户你使用我可以替代谁,这种直观的图文结合,帮助用户快速理解Notion对他们的价值。Team wikiー取代 GitHub、Confluence项目和任务管理ー取代Trello、Asana 和 Jira笔记和文档ー取代Google Docs和 Evernote解释自己对用户的价值是新产品获客中最关键的因素,尤其对于Notion这样的多产品来说更是如此。这种借用领先者的做法非常值得借鉴,很聪明,也很直接。前文提到过,一个集成了多个主要应用场景的产品往往难以说清自己的优势所在,Notion的1-2-3组合页面在表述上非常直接,利用图形的优势把自己能做的事情快速进行了表达,直击用户的需求点。共存而非取代当Notion给用户传达了清晰的定位,并尽量降低了使用门槛之后,它面对着另一个大课题:如何让用户迁移到Notion上,这些用户可能已经是Slack、Google Docs的忠实拥趸,让他们放弃原来的固有习惯显然很艰难。Notion的选择是:那就先别迁移。Notion 消除了进入壁垒,帮助他们更容易做出尝试的决定的一个关键方法是,他们已经非常清楚地表明,他们通过集成将其他工具“放置得很好”。这是一个巧妙的逆向思维应用,大多数产品总想着和别人“争夺”用户,Notion却采用了“共存”的策略。简单来说,在Notion上用户可以继续使用大多原来习惯的工具,无论是通过扩展的模式还是插件,“多场景”的优势再度显现,Notion像是一个基于乐高组合逻辑的巨大容器,为诸多外部产品留足了共存的空间,或者说把它们从对立变为自己乐高组件的一部分。关系突然发生变化,选择Notion不意味着和其他工具的对立,这样的做法打消了用户最后的顾虑。经常使用 Slac,k?Notion和Slack可以很好的协同。不想完全抛弃谷歌套件吗?你不必这么做。Notion和Notion integrations可以与Google Sheets, Docs and Drive一起工作。— Josh Gallant from Foundation Inc这可能是Notion最大的魅力所在,即产品的部件化与扩展性。它更像是在搭建一套系统,而非单个应用,用户通过学习这套系统的使用方法和逻辑,可以“展现自己希望表达的所有内容”。这样的战略高度让Notion和本来的竞争对手产生了纬度上的错位,从对立的关系变成了借力的关系,Notion是一套体系,一套平台,而竞争对手在某种程度上帮助Notion丰富了自己的体系。暂时的小结:Notion采用了多场景、多功能的集成产品形态,这种做法让他们在激烈的电子表格与共享协作市场上保留了竞争力。也是进入巨头存量市场的一种方法。集成式产品的关键是要具备明确的楔子产品,它是向用户解释“我能做什么”的重要棋子,也是获客手段。“楔子策略”是任何产品都需要明确的重点。出色的UI和美术风格,使Notion的“成图率”极高,这既是一种品牌的独特性,又刺激了用户在社交媒体上的分享。先通过获客产品吸引用户,再慢慢引导用户发现更使用的场景,拉来用户和留住用户的是不同场景与功能。Notion通过强调和竞争对手的区别来定位自己,同时提供单人模式,将用户试用的摩擦成本降至最低。能够协同和兼容竞争对手的产品,不强迫用户进行产品迁移,打消用户最后的后顾之忧。在之后的第二部分,我们还会聊到Notion的核心特色之一:模板文化,以及他们如何通过社区构建自下而上的增长模式,还有Ivan等人如何撑过一开始那段艰难的创业期。ReferencesExcel也许是Jobs“思维自行车”的最佳实践 by 汗青How Notion Grows by Jaryd HermannExcel Never Dies by Packy McCormickCopyright © 青陈 QingChen All rights reserved.

2022-10-8 22:27

Letter #009 创造魔法般的伟大产品

审美Escombros / 装置艺术 / Ishmael Randall Weeks是什么样的信念和智慧在支撑着我们?本信件最后有艺术家和作品的详细介绍。与魔法无异的伟大产品倦怠,是今年大环境让我感受到的关键词。疫情抑制了远行的冲动,同时,大裁员、股市不振、业务收窄等消息充斥在北上广的科技圈里。资本环境迎来寒冬之时,更要命的是看不到前方的道路,下个趋势在哪?新能源吗?Web3吗?人工智能吗?(反正肯定不是新零售了。)朋友们见面都在谈论下一波浪潮的可能性,焦虑背后是充满不确定性所带来的不安,对个人和行业来说都是如此。回到科技行业的问题上。我们怀念Jobs和互联网技术曾经带来的神奇体验,那种醍醐灌顶般的感觉,绝不是Dynamic Island这样聪明伎俩所能比拟的。英国人C. Clarke曾说:Any sufficiently advanced technology is indistinguishable from magic. 任何足够先进的技术都与魔法无异。我想起了第一次使用iPod播放歌曲时的不可思议,第一次用OICQ敲响邻居家女孩子电脑的紧张,第一次通过淘宝从不知名的地方购买唱片,还有第一次的线上叫车、扫码支付、等等。这些第一次离我都有些远了,这样让我有些沮丧。但仔细想来,近年来依然有很多产品能制造一些惊喜的体验。比如上个月着实火了一把的Figma,再比如去年购买的Oculus。优秀的新产品依然在不断涌现,也许在创新程度上,它们与伟大的黄金年代存在差距,但「如魔法般的体验」依然时不时的能带来小确幸。作为产品从业者,我相信伟大产品与优秀产品的区别就在于能让人感到「怦然心动」,或如Clarke所言,像魔法一般的能力。国内的互联网圈在过去20年取得了惊人的成就,但由于环境和竞争机制的原因,我们更愿意把时间花在打磨细节和提升效率上,这让我们拥有了很多易用性杰出的产品,却少了一些具备浪漫色彩的真正创新。《Not Boring》的创始人 Packy McCormick 在twitter上询问海外用户,今年让他们产生神奇体验的产品有哪些,结果如下:从采样数量的规模来说,我们不能把这个榜单太当回事儿,(说正经的,即便是上千的样本量,能有多少调查榜单值得相信呢)但其中一些特征依然值得说一说。如果你把 DALL • E 2、Stable Diffusion和 Midjourney 的结果结合起来,人工智能图像生成是最神奇的产品类别,几乎是第二接近的竞争者的4倍。人工智能依然是最值得关注的领域,说起来这种把技术拟人化的叙事方式,似乎最接近所谓「魔法」的体验。如图像生成这样的产品在未来几年取得巨大成功,肯定不是太让人惊讶的事。人工智能从被寄予厚望开始已经过去很多年,开花结果是正常的,这又是一个经典由技术驱动的产品创新。排名第三的Arc Browser在今年也是火的一塌糊涂,和 DALL • E 2不同的是,这是一个依赖产品交互创新的产品,听起来更让产品经理和设计师们「振奋人心」。Packy对于Arc这类的小产品可产生的价值格外迷恋,但同时也阐述了一个关于生命周期的事实:即伟大的产品在公司变大的过程中注定逐渐变得平庸,或者说失去创造力。这一过程伴中,团队会收获巨大的经济利益,然后魔法就会消失,我们只能寻找下一个兴奋点。其中道理有关商业体的周期法则,也有关人们对于新鲜事物不断追逐的本性,即「享乐适应性」。I had a whole section in that earlier draft of this piece going through each of the products I once found magical and explaining why the magic is gone: Google searches are a messy mess, Facebook has optimized its core product to death, Instagram is Reeling, etc… 在这篇文章的早期草稿中,我有一个完整的部分来浏览我曾经觉得有魔力的每一个产品,并解释为什么魔力消失了: 谷歌搜索是一团糟,Facebook 已经优化了它的核心产品以走向终结,Instagram 正在「Reeling」,等等。 But I think you know what I’m talking about. It’s just the way of things. Initially magical products become less magical with time. 但我想你知道我在说什么。事情就是这样。最初,随着时间的推移,魔法产品变得不那么神奇了。Blame familiarity. Blame business models. Blame technical debt. Blame multivariate testing and optimization. Blame the cruel coldness of the market. Blame the hedonic treadmill. Blame our unending pursuit of shiny new things. Blame human nature. 要怪就怪熟悉感。怪商业模式。怪技术债务。怪多变量测试和优化。怪市场的冷酷无情。怪享乐适应。怪我们没完没了地追求新鲜事物。或者说:怪人性。如果你对Packy McCormick这份榜单及其看法感兴趣,不妨去读一下他在Substack上发表的原文。Referances🥕 Indistinguishable from Magic|近乎魔法🌎 译注版日本企业创造产品的独特方法来自Harvard Business Review 的johny k. johansson分析了日本企业对市场调研的独特做法。在Walkman这一伟大产品的诞生过程中,盛田昭夫(Akio Morita)完全没有理会市场调研的结果,几乎是凭直觉一意孤行下令开干的。而在当时,公司内部的用户调研显示:随身听这种玩意儿根本没人会用。故事后来的结果众人皆知,Walkman几乎是20世纪最伟大的音乐产品之一。Johny的观察不止于此,他发现大量的日本企业都不太理会常规市场调研(或者说用户研究)的方法,而是采用一套更加接近业务一线和真实渠道的数据收集手段来辅佐自己的判断。日本企业认为只有来自一线渠道和消瘦的数据才是「真实具体」的,与之相比,由研究部门产出的报告往往过于虚无,缺乏具体性。Japanese-style market research relies heavily on two kinds of information: “soft data” obtained from visits to dealers and other channel members, and “hard data” about shipments, inventory levels, and retail sales. Japanese managers believe that these data better reflect the behavior and intentions of flesh-and-blood consumers. 日本式的市场研究严重依赖于两种信息: 从访问经销商和其他渠道成员获得的“软数据”,以及关于出货量、库存水平和零售销售的“硬数据”。日本经理人认为,这些数据更好地反映了有血有肉的消费者的行为和意图Japanese companies want information that is context specific rather than context free—that is, data directly relevant to consumer attitudes about the product, or to the way buyers have used or will use specific products, rather than research results that are too remote from actual consumer behavior to be useful. 日本公司希望获得的信息是具体的,而不是没有背景的ーー也就是说,与消费者对产品的态度直接相关的数据,或者与消费者使用或将使用特定产品的方式直接相关的数据,而不是与实际消费者行为过于遥远而无用的研究结果。同时非常尊重操盘手自身对业务的「感觉」。这种感觉并不是毫无根据的主观臆断,而是来自多年游走在业务一线的经验形成的肌肉记忆。日本企业能这样做的很大原因是因为企业内部极其严格的晋升制度,操盘者具备多年的实操经验,才能根据渠道和业务数据作出敏锐的洞察。这是一套与传统用户研究逻辑完全不同的方法,其有效性被反复验证:本田就是一个很好的例子。当公司选择Kihachiro Kawashima领导其美国销售机构时,公司选择了一位对美国知之甚少的国内销售专家。Kawashima把他在美国的最终成功归因于三个原则: “真实、贴近行动、本土化。” 本田在美国市场的不同之处在于,高级经理们决定把多达50% 的时间花在拜访经销商和经销商上,这些人知道美国消费者真正想要的是什么。这种亲自动手、贴近客户的方法的最终目标是更好地理解客户的需求和行为。日本人不认为市场营销是工程学或金融学之类可以在学校里教授的东西。对顾客需求的敏感是通过努力工作和经验学到的。真实、贴近行动、本土化。是我个人非常认同的用户研究方法,做生意和做研究是有本质区别的。实际上在我有限的职业经历里,我几乎很少记起哪一个非常成功的项目洞察来自于传统的用户研究。这并非对从事用户研究工作的朋友有质疑,而是过于偏向研究型的调研方法,往往带来的是局部的优化建议,很难形成全局性的洞察和决策。这也和用户研究部门在公司内所处的角色有关,很多用研团队最后会走向公司的战略部,提升决策高度,从易用性上升到生意层面。这就非常说明问题。最后,johny认为日本企业这种做事特点成就了一批伟大产品,但也存在很多缺陷。这再次印证了没有什么方法是绝对正确的,西方世界严谨的研究逻辑一定有他自身的价值,作为一个对「舶来文化」最重视,和洋混杂做的如此极致的国度,如今的日本企业一定也在慢慢思考自身要做的变化。Referances🥕 Market Research the Japanese Way | 日本式市场研究🌎 译注版与自己的对话Simone Stolzoff在every上的专栏谈到了自顾者的心态问题。这也引发了上周我所写的随笔《 离开公司后,如何与自我怀疑相处 》。这两年身边越来越多的朋友的选择离开公司,做自己喜欢的事情,也寻找另一种生活方式的可能,相信类似关于「心力」的探讨以后会越来越多。🥕 Dealing with Doubt on the Pathless Path | 在无路之路上与自我怀疑相处🌎 译注版Anne-Laure Le Cunff 谈论如何从混乱中获得自我的成长,大家也一定记得「冰与火之歌」中那句著名的混乱是阶梯。而「混乱边缘」的说法在80年代就被提出,并被认为与创新息息相关,在生态学、商业管理、心理学、政治学以及其他社会科学领域有着广泛的应用。作者Anne借用「surfing the edge of chaos」一书的内容阐述了混乱带来的创新机会,并且给出了面对混乱时的应对建议:与自己达成某些约定(每周写1篇文章)创建一个锚定的放松习惯 (画画、深呼吸)联系元认知(反思能力)寻找群体,避免孤立很有趣,也许也很实用的文章,详见原文。🥕 Chaos surfing: from surviving to thriving in chaotic times | 混乱冲浪: 从混乱时代的生存到繁荣🌎 译注版由于我是一个坚定的概率支持者,向来对教导成功的话题不太感冒,反倒是FRANCISCO JAVIER ARCEO这样分享失败经历的文章更得我心。小时候就被教导人生不如意十之八九,现在想想真是童叟无欺的硬道理。🥕 Lessons from my Failed Startup | 从失败的创业中得到的教训🌎 译注版有趣的商业模式在墨西哥出现了大量的Shein实体店,这些店主在Shein采购服装,再通过自己的实体店卖给当地的百姓。这中间解决了在互联网不发达地区,人们普遍缺乏的信任感问题。这种能「实际触摸」的真实体验也许是相当长一段时间线下商业体的优势所在。这个模式的流行再次印证了在不同文化的地域,能诞生出商业模式的多样性。Mexico has an internet penetration rate of around 75%, but digital shoppers only account for about 9% of the country’s formal retail purchases, according to the Mexican Association of Online Sales. 墨西哥的互联网普及率约为75%,但数字购物者只占该国正规零售购物的约9%。同一组织的研究表明,墨西哥购物者对网上购物犹豫不决的主要原因是担心在进行数字购物时被诈骗。有趣的是,Citywalk在中国的境遇,也许和墨西哥的Shein商店形成了鲜明的对比。我自己第一次体验Citywalk是在罗马,一名当地的美院留学生带我们游览了一下午的艺术之旅,但因为文化问题,这种强调体验和独特性的在国内的经营并不轻松,再加上疫情的原因更是雪上加霜。也许从年轻人开始,会有越来越多的人接受这样的新鲜模式。这需要时间和旅游市场的教育,而我们往往会因为理想的憧憬忘记经营的艰辛,愿有理想的创业者们能生存下去。🥕 Unauthorized Shein boutiques are popping up across Mexico | 未经授权的 Shein 精品店在墨西哥各地如雨后春笋般涌现🌎 译注版🥕 人气 citywalk,艰难运营路 | 看不见的城市是什么信念在支撑我们的城市「青陈」会持续引入艺术作品和设计的内容,在我的构想里,它完美贴合于「产品文化」的定义。这是来自Ishmael Randall Weeks的装置艺术「escombros」,这是我非常喜欢的一组现代艺术作品。作者通过废墟与材料的组合碰撞,反思城市、历史与智慧的关系。时间性在这组作品里体现无遗。🏛 ISHMAEL RANDALL WEEKS |Escombros顺颂起居汗青 2022.9Copyright © 青陈 QingChen All rights reserved.

2022-8-28 3:20

Letter #001 旧的价值

卷首我关心这副皮手套,我微笑着看它们被风吹拂,因为它们已经在那儿陪伴了我这么多年。 虽然只值三块美金,而且已经补到无法再补,但是我仍然花了许多时间和精力去护理它们,因为我不能想象换一副新手套的感觉。 这种想法似乎很不实际,但是手套并不仅仅需要实际,其他事情也是如此。 ——罗伯特.M.波西格从2006年进入互联网行业至今,对于新鲜事物的敏感和追捧已经是种习惯了。身边的朋友们总在讨论新技术、新赛道,很多人也确实从中获利匪浅。今天对元宇宙的讨论热度即是典型,在制造希望的同时也贩卖着焦虑(小宇宙上有多少节目没有聊过元宇宙?)。我们害怕错过新事物,害怕抓不住机会,以致抱憾半生。数码产品的消费文化更是与“新”的属性密不可分。大多数主流手机拥有夸张的升级频次,每年iPhone与Mac的新品总会衍生海量的内容评测和创作者经济,更好的硬件性能带来更多的功能特性,而这些特性有多少是必须,有多少是过剩,却往往被忽略。“新”意味着活力与增长,但是否也意味着绝对的“更优“?用波西格的话说,“新”是否一定意味着拥有“良质”?本次分享的文章,即试图探讨新与旧的关系。目录旧物的权利 George Cave苹果将如何变革汽车 Benedict Evans为了忘却的纪念-旧物与装置 Grid Studio新事物狂热症 Nicholas Taleb纸书的价值 Chip Kidd图表:2021新能源车销售数据电影:《傲慢与偏见》音乐:《Dragon New Warm Mountain I Believe in You》旧物的权利The last design you'll ever make - Interaction Magic来自伦敦的George Cave是一名非常有趣的产品与界面设计师,关注实物设计与前沿科技的结合,他的blog里有大量关于产品的奇思妙想。本文中Cave探讨了一个很少被关注的维度:产品的可维修性(Designing for a right to repair)。为了节省我们现有的资源,维修产品以延长其寿命至关重要,电子产品的再制造并未具备规模。在英国,实际上只有不到10%的塑料被回收。微软的海洋塑料鼠标可能看起来很可爱,但如果你真的关心海洋,你最好不要买新鼠标。 设计师的新挑战是。尽可能长时间地推迟产品进入坟墓的时间。这里涉及到设计伦理和商业利益之间的某种平衡。越是高频更替的产品对于”商业模式“越有利,”频次“这个概念对于重视用户生命周期价值的消费企业来说至关重要。而可维修性(尤其是用户自己维修)在某种层面上和重视频次的商业模式是有些冲突的。笔者的出发点是对于资源的节省和某种用户权益,但现实是大部分的企业可能更希望产品的生命周期变短,这样才能让用户不停消费,Cave自己也承认在如”智能手机“等产品想延长生命周期,如今越来越难:有意识地为维修设计需要三个条件:1.可更换部件的供应链2.可重新组装的设计3.可访问的文档第一点对于供应链的要求比较高,尤其是消费品升级如此频繁的年代,设计师本身难以控制这些因素,更多的是依靠企业本身的产品理念,文中举例了Henry Hoover吸尘器,其供应链至今都能支持维修1981年最早的版本。如果说第一点难以控制,那么后两点则完全是设计者”愿不愿意做到“,或者说是否认为”有必要做到“的问题了。四年前,宜家的Lisabo桌子引入了一种新的楔形桩技术。作为一种无工具组装系统。更有趣的是,不使用胶水,意味着它可以很容易地多次重新组装......宜家为Billy、Pax和其他四种畅销产品推出了一套拆卸说明。对于一家曾经负责全球木材消费1%的公司来说,每一个可以重新组装的比利,都意味着节省了重新生产的木材资源。进行可重新组装的设计,要求是必须懂得产品工程。之前在负责团队时,我曾希望所有的设计师和产品经理,至少都基本了解开发技术的基本框架和原理,甚至能自己有能力完成一些简单的前端开发。对供应链和工程技术的了解,是设计产品的基础。现在的大公司分工很细致了,好处很多,缺点是很难有机会让人接触到交叉领域的操作知识。十几年前在阿里,作为交互设计师还要经常帮忙前端开发的同学写一部分基础的css和HTML,人少的时候不太讲流程,现在想起来反而受益良多。乔布斯应该在这方面做了很多布道,尤其那句著名的”...... Design is how it works.“。塔勒布对硅谷的商业精英大多嗤之以鼻,反倒评价乔布斯是具有”手工艺者精神“的奇人,在高度工业化时代最伟大的消费品公司,反而是最具备手工艺者精神的。Cave在本文中重点引用了KS1952电话设计的案例,并展示了它惊人的内部,不得不说实在是太漂亮了。一直对战后设计的风格很感兴趣,复古并不意味着现代感的缺失。它通过一颗平头螺丝来打开。这意味着任何平坦的物体都可以用来打开它——不需要螺丝刀,更不用说定制工具了。这种做法很具天才性:成本略有增加,但好处是永远不会丢失,在重新关闭它时,转弯两端有助于对齐。 尽管KS1952的布线设计和组件布局非常漂亮,但当你第一次打开它时,有一个小细节总是引人注目。这是里面最不可能的存在,一个精致的手绘纸质示意图。一个兼具美感和实用性的设计典范,设计师在这里考虑了的产品的时间维度,尽管我们经常强调用户的使用场景,但维修却不是常见的考虑对象。互联网产品的设计属性中有迭代这一关键词,而实物产品的迭代大多由用户完成。cave认为产品文档的管理对维修而言是第三个重要属性,常见的做法除了专业的网站服务,还有就是这种内部嵌套的做法。如今别说维修文档,连产品的说明书都已成为”体验不够好“的罪证。用户与产品之间的关系变得无比粗暴和单纯,无需学习,用完即换,波西格认为产品是存在个性的,这种个性源于用户和产品之间的陪伴与互动,并非原生的:每一部摩托车都有它自己的个性,也可称之为你对这部车子所有直觉的总和。 这种个性常会改变,多会变得更糟,但常常也会出人意料地变好,培养车子的这种个性正是维修保养的真正目的。这也即是旧物的价值,可能这种价值很不实际。但”手套并不仅仅需要实际,其他事情也是如此。苹果将如何变革汽车What would Apple add to cars? — Benedict EvansBenedict对于苹果会如何设计自己的汽车产品所写的短篇评论。文章是付费订阅的,我仅附上摘录版,请注重对作者的版权尊重。这同样是一个新与旧进行碰撞的话题。文章不出意外的将苹果当年用iphone颠覆手机行业的历史作为案例进行类比,Evans认为如今的汽车产业和当年诺基亚所引领的手机行业在产品状况上非常类似。旧的汽车型号往往简单、专注、清晰和完美,但新型号的汽车却非常混乱,按钮和屏幕的镶嵌是一个复杂、混乱的产物。21 世纪末的诺基亚和过去十年的汽车 OEM 在没有真正了解“平台”或“统一体验”会是什么样子的情况下,增加了无穷无尽的计算机性内容,整个范式变得非常沉重。这看起来很像苹果在2007年以全新的手机概念席卷的情况而苹果真正擅长的产品创新,是否能在汽车领域继续创造辉煌,Evans给予了保留态度。在他看来,汽车真正的核心变革在于自动驾驶能力的突破,而这并不是苹果真正擅长的事情之一。向电力的转变是汽车制造方式的根本性变化——部件减少了几个数量级,供应链也大不相同,核心驱动力转向软件(或固件)。我们从软件简单的复杂汽车发展到软件复杂的汽车。 苹果一直非常擅长在手机领域做这种事情——垂直集成和定制硅。但这是一种达到目的的手段,也是优化产品的方法,而不是产品本身。毕竟原来的iPhone使用了完全现成的部件。相反,苹果在从电池续航能力到与运营商的关系等各个方面,对“手机”应该是什么以及你可以做出什么权衡,提出了完全不同的想法。但特斯拉除了利润率外没有这样做,苹果的“更好的特斯拉”也不会这样做。所有这些都表明,我们改变“汽车”含义的地方,以及苹果真正可以体现价值增量的地方,很可能不仅仅是新能源这么简单,更不用说在屏幕上做的那些事了。真正的改变应该是在自动驾驶方面。但那意味着什么?我们尚处于自动驾驶的冬天——这东西还不起作用——而且从根本上说,这是一个计算机科学和机器学习问题,人们会期望Alphabet做得好,苹果没有什么优势。更糟糕的是,如果我们真的有完整的5级自主驾驶能力,那么你就会上车说“带我回家”——这实际上也不是苹果能解决的问题。苹果设计的新汽车究竟能带来什么样的新体验,Evans认为不能仅仅因为iphone曾经革新了手机的定义,就推断出它在汽车领域的必然成功。每个行业的本质是不一样的,互联网在过去这些年做出很多变革,但在很多领域也在不断碰壁。为了忘却的纪念-旧物与装置Grid | Frame Studio - Every Classic Deserves To Be Framed一个有趣的产品创意。Grid Studio将老去的经典数码产品分解并封装,制作成类似装置艺术的产品。同样在Etsy上流行的还有Geekmem等公司的类似产品。两者似乎是来自中国的公司,然而这种利用二手产品供应链的巧妙再包装,正好呼应了波西格关于旧物价值的思考。一个产品除去功能属性,还有情感属性,而溢价往往体现在后者。在我们度过了对产品功能要求的阶段后,必然进入情感消费的领域,陀思妥耶夫斯基说“人不单靠面包活着”。旧物能唤起人们的记忆,这是人喜欢怀旧的原因。新事物狂热症一直对塔勒布的著作情有独钟,很多对事物的看法受到他的影响。近一个月重读塔勒布的几本书,发现有了很多新的体验,这次只聊新事物狂热症的话题。反脆弱性意味着旧的事物要胜过新的事物,而且是远胜新的事物,这可能与我们的直觉不符。不管某些东西看起来多么符合你的想法,它的叙述多么好或多么坏,时间更了解它的脆弱性,并会在必要时毁掉它。在这里,我要揭示一种现代病,它与干预主义有关,被称为新事物狂热征,它带来了脆弱性。但我们往往无视这样一个事实:我们一直在预测一个高度科技化的未来,似乎没有纠偏机制可以让我们认识到这一点。这里可能存在一个选择性偏见:那些致力于描述未来的人往往会患上新事物狂热征(不治之症),一切只是因为他们喜欢现代化。塔勒布认为人类有迷恋新技术与新事物的倾向,但事实上,这样对于新世界的畅想大部分情况下都是过激的。他并不是说所有的新技术都没有价值(显然不是,他多次提到互联网是革命性的新技术),但这样的技术被预言命中的转化率是很低的,换句话说,大部分站在今天的角度对于未来的畅想,可能都不会那么快的变为现实。这让我想到最近关于元宇宙的疯狂讨论。很多人已经开始预言元宇宙的虚拟生活即将到来,但在我实际体验了半年的Oculus之后,我却开始对这种预言持有保留态度。无论是硬件的舒适度、运算量的供给瓶颈、带宽基建的完善度、内容的粘性,都让人觉得它还有很长的路要走。而FB从去年开始引领的这一波风潮,在大方向上无可厚非,但究竟需要多久才能实现,确实值得冷静反思。我们似乎更关注不同版本之间的区别而非共性。我们甚至会迅速厌倦我们所拥有的东西,并不断寻找升级版。之后,期待另一个“改进版”的新产品。这种购买新产品,最终又对其失去新鲜感(尤其是与更新的东西比较时),并期待购买更新款产品的冲动被称为“跑步机效应”。这是个宏大的话题,我没有能力对其进行评价,尤其在面对技术这样严肃的话题时。但是我拥有一部分事实:我把大量的时间花在重看经典电影和喜欢的书籍上,在这些深度阅读的内容中,“新”从来不是我考的主要因素。说实话,作为一个十几年的电影爱好者,我不太理解何不去反复欣赏海量的经典作品,而去追求那些速朽且雷同的娱乐消费品。纸书的价值TED上的一段几分钟的视频,讲演者是图形与书籍设计师Chip Kidd。纸书作为古典价值,也拥有一种”旧“的属性。相比电子阅读器孰优孰略是老生常谈的问题了,就像你用黑胶还是流媒体听音乐一样。Kidd认为纸书的介质本身是一种人机交互界面(UI),并且有自己无可替代的UI特性。这是一个挺有意思的角度,我们一直认为电子书相比纸书更具备“新”的特征,却忽视纸张本身也具有用户界面的特殊属性。本篇笔记的纸书阅读部分提到的作者塔勒布,在《反脆弱》当中也阐述了几段他对于电子书和纸书之间对比的观点。每当我搭乘飞机,坐在一个用电子阅读器阅读企业家常读的垃圾文的企业家旁边时,企业家总是忍住不拿他的电子阅读器与我阅读的纸质进行比较,并对我的书嗤之以鼻。据说,电子阅读器的“效率更高”,它承载的是书的内容,是企业家称为信息的东西,而且携带更方便,他可以在他的设备里下载能装满一个图书馆的书籍,还可以“优化”利用他打称夫球的空闲时间。我从来没有听任何人说过电子阅读器和实体书的重大区别,比如气味、质地、尺寸(书是三维的颜色、翻页的能力、与电脑屏幕相比的手感,以及导致我们的阅读感受莫名不同的隐性特征。论的重点往住是两者的共性(这个奇妙的设备多么像本书)。然面,当他将他的电子阅读器与其他电子阅读器比较时,他却会睁大眼睛盯住那些微小的差异。茑屋T AIR与二手文化日本有一种完全不具时效性的美学。关注日本文化的朋友,大概很容易能理解我在说什么。2015年,我在代官山的茑屋书店有过一次难忘的经历。这家设计精良的书店,有一整层是陈列CD和黑胶的音乐专区,在我挑选几张唱片要去结账时,才发现这些唱片不是用来卖的,而是出租的。这篇文章是基于当时经历的一些想法。Link短信息过去10年中新能源汽车的销售占比,2021年增长迅速,但依然只有9%。审美重看了凯拉.奈特莉版本的《傲慢与偏见》。乔·赖特对于古典题材节奏的把握太好了,一开始看就停不下。摄影和音乐也都是顶级的。凯拉.奈特莉的笑容让人记忆深刻,和她在《真爱至上》中的表演同样惊艳。近些年对新电影的感觉满满变弱,觉得重看老电影有无穷的乐趣。Big Thief是来自纽约的独立乐队。这张《Dragon New Warm Mountain I Believe in You》融合了民谣的风格,乐器极致单纯与纯粹,有一种复古的60-70年代民谣的感觉。可听性很强,是近期工作时背景音的首选,隆重推荐。顺颂时祺汗青